Mean spherical approximation

From SklogWiki
Jump to navigation Jump to search

The Lebowitz and Percus mean spherical approximation (MSA) (1966) (Ref. 1) closure is given by


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(r) = -\beta \omega(r), ~~~~ r>\sigma.}


The Blum and Hoye mean spherical approximation (MSA) (1978-1980) (Refs 2 and 3) closure is given by


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_{ij}(r) \equiv h_{ij}(r) +1=0 ~~~~~~~~ r < \sigma_{ij} = (\sigma_i + \sigma_j)/2}


and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)= \sum_{n=1} \frac{K_{ij}^{(n)}}{r}e^{-z_nr} ~~~~~~ \sigma_{ij} < r}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{ij}(r)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)} are the total and the direct correlation functions for two spherical molecules of i and j species, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i} is the diameter of 'i species of molecule. Duh and Haymet (Eq. 9 Ref. 4) write the MSA approximation as


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r) = \frac{c(r) + \beta \Phi_2(r)}{1-e^{\beta \Phi_1(r)}}}


where and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2} comes from the WCA division of the Lennard-Jones potential. By introducing the definition (Eq. 10 Ref. 4)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.s(r)\right. = h(r) -c(r) -\beta \Phi_2 (r)}


one can arrive at (Eq. 11 in Ref. 4)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(r) \approx B^{\rm MSA}(s) = \ln (1+s)-s}


The Percus Yevick approximation may be recovered from the above equation by setting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2=0} .

References

  1. J. L. Lebowitz and J. K. Percus "Mean Spherical Model for Lattice Gases with Extended Hard Cores and Continuum Fluids", Physical Review 144 pp. 251 - 258 (1966)
  2. L. Blum and J. S. Høye "Solution of the Ornstein-Zernike equation with Yukawa closure for a mixture", Journal of Statistical Physics, 19 pp. 317-324 (1978)
  3. Lesser Blum "Solution of the Ornstein-Zernike equation for a mixture of hard ions and Yukawa closure" Journal of Statistical Physics, 22 pp. 661-672 (1980)
  4. Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics 103 pp. 2625-2633 (1995)