Soft sphere potential
The soft sphere potential is defined as
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Phi _{12}\left(r\right)=\left\{{\begin{array}{lll}\epsilon \left({\frac {\sigma }{r}}\right)^{n}&;&r\leq \sigma \\0&;&r>\sigma \end{array}}\right.}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}\left(r \right) } is the intermolecular pair potential between two soft spheres separated by a distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r := |\mathbf{r}_1 - \mathbf{r}_2|} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon } is the interaction strength and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the diameter of the sphere. Frequently the value of is taken to be 12, thus the model effectively becomes the high temperature limit of the Lennard-Jones model [1].
Equation of state
Solid phase
Transport coefficients
References
- ↑ Jean-Pierre Hansen "Phase Transition of the Lennard-Jones System. II. High-Temperature Limit", Physical Review A 2 pp. 221-230 (1970)
- ↑ William G. Hoover, Marvin Ross, Keith W. Johnson, Douglas Henderson, John A. Barker and Bryan C. Brown "Soft-Sphere Equation of State", Journal of Chemical Physics 52 pp. 4931-4941 (1970)
- ↑ Nigel B. Wilding "Freezing parameters of soft spheres", Molecular Physics 107 pp. 295-299 (2009)
- ↑ D. M. Heyes and A. C. Branka "Density and pressure dependence of the equation of state and transport coefficients of soft-sphere fluids", Molecular Physics 107 pp. 309-319 (2009)