I think that the current  definition of Boltzmann distribution  is misleading. 
The probability of a microsate, say  , is
, is  ![{\displaystyle \propto \exp \left[-E(X_{i})\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2723c183e143d7747e97d16ab6b4a7bba6fd6023) .
but a given energy can be degenerate, so I think that it should be written something like
.
but a given energy can be degenerate, so I think that it should be written something like
![{\displaystyle f(E)\propto \Omega (E)\exp \left[-E/k_{B}T\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/725f1e2b5447a4afad931d9e8e7df8b9f9de382f) , where , where
 is the degeneracy of the energy
 is the degeneracy of the energy  .
.
therefor 
![{\displaystyle f(E)={\frac {1}{Z}}\Omega (E)\exp \left[-E/k_{B}T\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/29989eb0fa666f3d8a3535c8e19c64d4ed203c45) . .
--Noe 10:32, 17 July 2008 (CEST)