Mean spherical approximation

From SklogWiki
Revision as of 12:07, 27 February 2007 by Nice and Tidy (talk | contribs)
Jump to navigation Jump to search

The Lebowitz and Percus mean spherical approximation (MSA) (1966) (Ref. 1) closure is given by


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(r) = -\beta \omega(r), ~~~~ r>\sigma.}


The Blum and Hoye mean spherical approximation (MSA) (1978-1980) (Refs 2 and 3) closure is given by


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_{ij}(r) \equiv h_{ij}(r) +1=0 ~~~~~~~~ r < \sigma_{ij} = (\sigma_i + \sigma_j)/2}


and

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{ij}(r)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{ij}(r)} are the total and the direct correlation functions for two spherical molecules of i and j species, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i} is the diameter of 'i species of molecule. Duh and Haymet (Eq. 9 Ref. 4) write the MSA approximation as


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r) = \frac{c(r) + \beta \Phi_2(r)}{1-e^{\beta \Phi_1(r)}}}


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_1} and comes from the WCA division of the Lennard-Jones potential. By introducing the definition (Eq. 10 Ref. 4)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.s(r)\right. = h(r) -c(r) -\beta \Phi_2 (r)}


one can arrive at (Eq. 11 in Ref. 4)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(r) \approx B^{\rm MSA}(s) = \ln (1+s)-s}


The Percus Yevick approximation may be recovered from the above equation by setting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_2=0} .

References

  1. [PR_1966_144_000251]
  2. [JSP_1978_19_0317_nolotengoSpringer]
  3. [JSP_1980_22_0661_nolotengoSpringer]
  4. [JCP_1995_103_02625]