Talk:Boltzmann distribution: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (New page: I think that the current definition of Boltzmann definition is misleading. The probability of a microsate, say <math >X_i </math>, is <math> \propto \exp \left[ - E(X_i) \right] </math>...)
 
m (small change)
Line 1: Line 1:
I think that the current  definition of Boltzmann definition is misleading.  
I think that the current  definition of Boltzmann distribution  is misleading.  
The probability of a microsate, say <math >X_i </math>, is  <math> \propto \exp \left[ - E(X_i) \right] </math>.
The probability of a microsate, say <math >X_i </math>, is  <math> \propto \exp \left[ - E(X_i) \right] </math>.
but a given energy can be degenerate, so I think that it should be written something like
but a given energy can be degenerate, so I think that it should be written something like

Revision as of 12:53, 17 July 2008

I think that the current definition of Boltzmann distribution is misleading. The probability of a microsate, say Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i } , is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \propto \exp \left[ - E(X_i) \right] } . but a given energy can be degenerate, so I think that it should be written something like

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(E) \propto \Omega(E) \exp \left[ - E/k_B T \right] } , with

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega \left( E \right) } is the degeneracy of the energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } .

therefor

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(E) = \frac{1}{Z} \Omega(E) \exp \left[ -E/k_B T \right] } .

--Noe 10:32, 17 July 2008 (CEST)