1-dimensional hard rods: Difference between revisions
m (Slight tidy up.) |
(Beautiful derivation added. Only, it relies on the Laplace transform.) |
||
| Line 64: | Line 64: | ||
where <math> \eta \equiv \frac{ N \sigma}{L} </math>; is the fraction of volume (i.e. length) occupied by the rods. | where <math> \eta \equiv \frac{ N \sigma}{L} </math>; is the fraction of volume (i.e. length) occupied by the rods. | ||
== Isobaric Ensemble: an alternative derivation == | |||
Adapted from Reference [4]. If the rods are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math> the canonical [[partition function]] can also be written: | |||
: <math> | |||
Z= | |||
\int_0^{x_1} d x_0 | |||
\int_0^{x_2} d x_1 | |||
\cdots | |||
\int_0^{L} d x_{N-1} | |||
f(x_1-x_0) | |||
f(x_2-x_1) | |||
\cdots | |||
f(L-x_{N-1}), | |||
</math> | |||
where <math>N!</math> does not appear one would have <math>N!</math> analogous expressions | |||
by permuting the label of the (distinguishable) rods. <math>f(x)</math> is the [[Boltzmann factor]] | |||
of the hard rods, which is <math>0</math> if <math>x<\sigma</math> and <math>1</math> otherwise. | |||
A variable change to the distances between rods: <math> y_k = x_k - x_{k-1} </math> results in | |||
: <math> | |||
Z = | |||
\int_0^{\infty} d y_0 | |||
\int_0^{\infty} d y_1 | |||
\cdots | |||
\int_0^{\infty} d y_{N-1} | |||
f(y_1) | |||
f(y_2) | |||
\cdots | |||
f(y_{N-1}) \delta \left( \sum_{i=0}^{N-1} y_i-L \right): | |||
</math> | |||
the distances can take any value as long as they are not below <math>\sigma</math> (as enforced | |||
by <math>f(y)</math>) and as long as they add up to <math>L</math> (as enforced by the [[Dirac_delta_distribution | Dirac delta]]). Writing the later as the inverse [[Laplace transform]] of an exponential: | |||
: <math> | |||
Z = | |||
\int_0^{\infty} d y_0 | |||
\int_0^{\infty} d y_1 | |||
\cdots | |||
\int_0^{\infty} d y_{N-1} | |||
f(y_1) | |||
f(y_2) | |||
\cdots | |||
f(y_{N-1}) | |||
\frac{1}{2\pi i } \int_{-\infty}^{\infty} ds \exp \left[ - s \left(\sum_{i=0}^{N-1} y_i-L \right)\right]. | |||
</math> | |||
Exchanging integrals and expanding the exponential the <math>N</math> integrals decouple: | |||
:<math> | |||
Z = | |||
\frac{1}{2\pi i } \int_{-\infty}^{\infty} ds | |||
e^{ L s } | |||
\left\{ | |||
\int_0^{\infty} d y f(y) e^{ - s y } | |||
\right\}^N. | |||
</math> | |||
We may proceed to invert the Laplace transform (e.g. by means of the residues theorem), but this is not needed: we see our configuration integral is the inverse Laplace transform of another one, | |||
:<math> | |||
Z'(s)= \left\{ \int_0^{\infty} d y f(y) e^{ - s y } \right\}^N, </math> | |||
so that | |||
:<math> | |||
Z'(s) = \int_0^{\infty} ds e^{ L s } Z(L). | |||
</math> | |||
This is precisely the transformation from the configuration integral in the canonical (<math>N,T,L</math>) ensemble to the isobaric (<math>N,T,p</math>) one, if one identifies | |||
<math>s=p/k T</math>. Therefore, the [[Gibbs energy function]] is simply <math>G=-kT\log Z'(p/kT) </math>, which easily evaluated to be <math>G=kT N \log(p/kT)+p\sigma N</math>. The [[chemical potential]] is <math>\mu=G/N</math>, and by means of thermodynamic identities such as <math>\rho=\partial p/\partial \mu</math> one arrives at the same equation of state as the one given above. | |||
==References== | ==References== | ||
| Line 69: | Line 131: | ||
#[http://dx.doi.org/10.1016/0031-8914(49)90059-2 L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, '''15''' pp. 951-961 (1949)] | #[http://dx.doi.org/10.1016/0031-8914(49)90059-2 L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, '''15''' pp. 951-961 (1949)] | ||
#[http://dx.doi.org/10.1016/0031-8914(50)90072-3 L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, '''16''' pp. 137-143 (1950)] | #[http://dx.doi.org/10.1016/0031-8914(50)90072-3 L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, '''16''' pp. 137-143 (1950)] | ||
#J. M. Ziman ''Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems''. ISBN 0521292808. Cambridge University Press (1979) | |||
[[Category:Models]] | [[Category:Models]] | ||
[[Category:Statistical mechanics]] | [[Category:Statistical mechanics]] | ||
Revision as of 13:37, 22 February 2008
1-dimensional hard rods are basically hard spheres confined to 1 dimension (not to be confused with 3-dimensional hard rods). The model is given by the intermolecular pair potential:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi (x_i,x_j) = \left\{ \begin{array}{lll} 0 & ; & |x_i-x_j| > \sigma \\ \infty &; & |x_i-x_j| < \sigma \end{array} \right. }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. x_k \right. } is the position of the center of the k-th rod, along with an external potential; the whole length of the rod must be inside the range:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{0}(x_i) = \left\{ \begin{array}{lll} 0 & ; & \sigma/2 < x < L - \sigma/2 \\ \infty &; & {\mathrm {elsewhere}}. \end{array} \right. }
Canonical Ensemble: Configuration Integral
The statistical mechanics of this system can be solved exactly (see Ref. 1). Consider a system of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. L \right. } defined in the range Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ 0, L \right] } . The aim is to compute the partition function of a system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. N \right. } hard rods of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \sigma \right. } . Consider that the particles are ordered according to their label: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 < x_1 < x_2 < \cdots < x_{N-1} } ; taking into account the pair potential we can write the canonical partition function (configuration integral) of a system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } particles as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \int_{\sigma/2}^{L+\sigma/2-N\sigma} d x_0 \int_{x_0+\sigma}^{L+\sigma/2-N\sigma+\sigma} d x_1 \cdots \int_{x_{i-1}+\sigma}^{L+\sigma/2-N\sigma+i \sigma} d x_i \cdots \int_{x_{N-2}+\sigma}^{L+\sigma/2-N\sigma+(N-1)\sigma} d x_{N-1}. }
Variable change: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \omega_k = x_k - \left(k+\frac{1}{2}\right) \sigma \right. } ; we get:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0 \int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots \int_{\omega_{i-1}}^{L-N\sigma} d \omega_i \cdots \int_{\omega_{N-2}}^{L-N\sigma} d \omega_{N-1}. }
Therefore:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \frac{ (L-N\sigma )^{N} }{N!}. }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(N,L) = \frac{ (L-N \sigma )^N}{\Lambda^N N!}. }
Thermodynamics
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A(N,L,T) = - k_B T \log Q \right. }
In the thermodynamic limit (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \rightarrow \infty; L \rightarrow \infty} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \frac{N}{L} } , remaining finite):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \left( N,L,T \right) = N k_B T \left[ \log \left( \frac{ N \Lambda} { L - N \sigma }\right) - 1 \right]. }
Equation of state
Using the thermodynamic relations, the pressure (linear tension in this case) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p \right. } can be written as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p = - \left( \frac{ \partial A}{\partial L} \right)_{N,T} = \frac{ N k_B T}{L - N \sigma}; }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \frac{p L}{N k_B T} = \frac{1}{ 1 - \eta}, }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta \equiv \frac{ N \sigma}{L} } ; is the fraction of volume (i.e. length) occupied by the rods.
Isobaric Ensemble: an alternative derivation
Adapted from Reference [4]. If the rods are ordered according to their label: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 < x_1 < x_2 < \cdots < x_{N-1} } the canonical partition function can also be written:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z= \int_0^{x_1} d x_0 \int_0^{x_2} d x_1 \cdots \int_0^{L} d x_{N-1} f(x_1-x_0) f(x_2-x_1) \cdots f(L-x_{N-1}), }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N!} does not appear one would have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N!} analogous expressions by permuting the label of the (distinguishable) rods. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is the Boltzmann factor of the hard rods, which is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x<\sigma} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} otherwise.
A variable change to the distances between rods: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_k = x_k - x_{k-1} } results in
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \int_0^{\infty} d y_0 \int_0^{\infty} d y_1 \cdots \int_0^{\infty} d y_{N-1} f(y_1) f(y_2) \cdots f(y_{N-1}) \delta \left( \sum_{i=0}^{N-1} y_i-L \right): }
the distances can take any value as long as they are not below (as enforced by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(y)} ) and as long as they add up to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} (as enforced by the Dirac delta). Writing the later as the inverse Laplace transform of an exponential:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \int_0^{\infty} d y_0 \int_0^{\infty} d y_1 \cdots \int_0^{\infty} d y_{N-1} f(y_1) f(y_2) \cdots f(y_{N-1}) \frac{1}{2\pi i } \int_{-\infty}^{\infty} ds \exp \left[ - s \left(\sum_{i=0}^{N-1} y_i-L \right)\right]. }
Exchanging integrals and expanding the exponential the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} integrals decouple:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Z={\frac {1}{2\pi i}}\int _{-\infty }^{\infty }dse^{Ls}\left\{\int _{0}^{\infty }dyf(y)e^{-sy}\right\}^{N}.}
We may proceed to invert the Laplace transform (e.g. by means of the residues theorem), but this is not needed: we see our configuration integral is the inverse Laplace transform of another one,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z'(s)= \left\{ \int_0^{\infty} d y f(y) e^{ - s y } \right\}^N, }
so that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z'(s) = \int_0^{\infty} ds e^{ L s } Z(L). }
This is precisely the transformation from the configuration integral in the canonical (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N,T,L} ) ensemble to the isobaric (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N,T,p} ) one, if one identifies . Therefore, the Gibbs energy function is simply Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G=-kT\log Z'(p/kT) } , which easily evaluated to be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G=kT N \log(p/kT)+p\sigma N} . The chemical potential is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=G/N} , and by means of thermodynamic identities such as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho=\partial p/\partial \mu} one arrives at the same equation of state as the one given above.
References
- Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)
- J. M. Ziman Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems. ISBN 0521292808. Cambridge University Press (1979)