9-3 Lennard-Jones potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
Line 1: Line 1:
[EN CONSTRUCCION]
== Functional form ==  
== Functional form ==  
The 9-3 Lennard-Jones potential is related to the [[Lennard-Jones model|standard Lennard-Jones potential]].
The 9-3 Lennard-Jones potential is related to the [[Lennard-Jones model|standard Lennard-Jones potential]].
Line 8: Line 9:
\left( \frac{ \sigma }{r} \right)^3 \right].
\left( \frac{ \sigma }{r} \right)^3 \right].
</math>
</math>
The minimum value of <math> V(r) </math> is obtained at <math> r = r_{min} </math>, with
* <math> V \left( r_{min} \right) = - \epsilon </math>,
* <math> \frac{ r_{min} }{\sigma} = 3^{1/6} </math>


== Applications ==
== Applications ==

Revision as of 12:45, 23 March 2007

[EN CONSTRUCCION]

Functional form

The 9-3 Lennard-Jones potential is related to the standard Lennard-Jones potential.

It takes the form:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r) = \frac{ 3 \sqrt{3}}{ 2} \epsilon \left[ \left( \frac{\sigma}{r} \right)^9 - \left( \frac{ \sigma }{r} \right)^3 \right]. }

The minimum value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(r) } is obtained at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = r_{min} } , with

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V \left( r_{min} \right) = - \epsilon } ,
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ r_{min} }{\sigma} = 3^{1/6} }

Applications

It is commonly used to model the interaction between the particles of a fluid with a flat structureless solid wall.