1-dimensional hard rods: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 55: Line 55:
== Thermodynamics ==
== Thermodynamics ==


[[Helmholz energy function]]
[[Helmholtz energy function]]
: <math> \left. A(N,L,T) = - k_B T \log Q \right. </math>
: <math> \left. A(N,L,T) = - k_B T \log Q \right. </math>



Revision as of 11:57, 27 February 2007

Hard Rods, 1-dimensional system with hard sphere interactions.

The statistical mechanics of this system can be solved exactly (see Ref. 1).

Canonical Ensemble: Configuration Integral

This part could require further improvements

Consider a system of length defined in the range Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left[0,L\right]} .

Our aim is to compute the partition function of a system of hard rods of length Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\sigma \right.} .

Model:

  • External Potential; the whole length of the rod must be inside the range:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{0}(x_{i})=\left\{{\begin{array}{lll}0&;&\sigma /2<x<L-\sigma /2\\\infty &;&elsewhere.\end{array}}\right.}
  • Pair Potential:

where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.x_{k}\right.} is the position of the center of the k-th rod.

Consider that the particles are ordered according to their label: ;

taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of particles as:

Variable change: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\omega _{k}=x_{k}-(k+{\frac {1}{2}})\sigma \right.}  ; we get:

Therefore:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(N,L) = \frac{ (L-N \sigma )^N}{\Lambda^N N!}. }

Thermodynamics

Helmholtz energy function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A(N,L,T) = - k_B T \log Q \right. }

In the thermodynamic limit (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \rightarrow \infty; L \rightarrow \infty} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \frac{N}{L} } , remaining finite):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \left( N,L,T \right) = - N k_B T \left[ \log \left( \frac{ N \Lambda} { L - N \sigma }\right) - 1 \right]. }

References

  1. Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
  2. L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
  3. L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)