Canonical ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 25: Line 25:
* <math> \left( R^*\right)^{3N} </math> represent the 3N position coordinates of the particles (reduced with the system size): i.e. <math> \int d (R^*)^{3N} = 1 </math>
* <math> \left( R^*\right)^{3N} </math> represent the 3N position coordinates of the particles (reduced with the system size): i.e. <math> \int d (R^*)^{3N} = 1 </math>


== [[Helmholtz energy function|Free energy]] ==
== Free energy and Partition Function ==


The Helmholtzz free energy is related to the canonical partition function as:
The [[Helmholtz energy function|Helmholtz free energy ]]is related to the canonical partition function as:


<math> F\left(N,V,T \right) = - \log  Q_{NVT} </math>
<math> F\left(N,V,T \right) = - \log  Q_{NVT} </math>

Revision as of 19:54, 19 February 2007

Canonical Ensemble:

Variables:

  • Number of Particles,
  • Volume, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V}
  • Temperature,

Partition Function

Classical Partition Function (one-component system) in a three-dimensional space:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{NVT}={\frac {V^{N}}{N!\Lambda ^{3N}}}\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]}

where:

  • , with being the Boltzmann constant,
  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle U} is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
  • represent the 3N position coordinates of the particles (reduced with the system size): i.e.

Free energy and Partition Function

The Helmholtz free energy is related to the canonical partition function as: