Semi-grand ensembles: Difference between revisions
| Line 57: | Line 57: | ||
* <math> G </math> is the [[Gibbs energy function]] | * <math> G </math> is the [[Gibbs energy function]] | ||
== Fixed pressure and temperature: Semigrand esemble == | |||
Following the procedure described above we can write: | |||
<math> \beta G (\beta,\beta p, N_1, N_2, \cdots N_c ) \rightarrow \Phi (\beta, \beta p, N, \beta \mu_{21}, \cdots, \beta \mu_{c1} ) </math>, | |||
where the ''new'' thermodynamical Potential <math> \Phi </math> is given by: | |||
<math> d \Phi = d \left[ \beta G - \sum_{i=2}^c (\beta \mu_{i1} N_i ) \right] = E d \beta + V d (\beta p) + \beta \mu_1 d N | |||
- \sum_{i=2}^c N_i d (\beta \mu_{i1} ). | |||
</math> | |||
Revision as of 16:00, 5 March 2007
General Features
Semi-grand ensembles are used in Monte Carlo simulation of mixtures.
In these ensembles the total number of molecules is fixed, but the composition can change.
Canonical Ensemble: fixed volume, temperature and number(s) of molecules
We will consider a system with "c" components;. In the Canonical Ensemble, the differential equation energy for the Helmholtz energy function can be written as:
- ,
where:
- is the Helmholtz energy function
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \beta \equiv 1/k_{B}T}
- is the Boltzmann constant
- is the absolute temperature
- is the internal energy
- is the pressure
- is the chemical potential of the species "i"
- is the number of molecules of the species "i"
Semi-grand ensemble at fixed volume and temperature
Consider now that we want to consider a system with fixed total number of particles,
- ;
but the composition can change, from the thermodynamics we can apply a Legendre's transform [HAVE TO CHECK ACCURACY] to the differential equation written above in terms of .
- Consider the variable change i.e.:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \left( \beta A \right) = E d \beta - (\beta p) d V + \beta \mu_1 d N - \beta \mu_1 \sum_{i=2}^c d N_i + \sum_{i=2}^c \beta \mu_2 d N_2; }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \left( \beta A \right) = E d \beta - (\beta p) d V + \beta \mu_1 d N + \sum_{i=2}^c \beta (\mu_2-\mu_i) d N_i; }
Or:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \left( \beta A \right) = E d \beta - (\beta p) d V + \beta \mu_1 d N + \sum_{i=2}^c \beta \mu_{i1} d N_i; }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \mu_{i1} \equiv \mu_i - \mu_1 \right. } . Now considering the thermodynamical potential: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta A - \sum_{i=2}^c \left( N_i \beta \mu_{i1} \right) }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \left[ \beta A - \sum_{i=2}^c ( \beta \mu_{i1} N_i ) \right] = E d \beta - \left( \beta p \right) d V + \beta \mu_{1} d N - N_2 d \left( \beta \mu_{21} \right). }
Fixed pressure and temperature
In the Isothermal-Isobaric ensemble: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (N_1,N_2, \cdots, N_c, p, T) } ensemble we can write:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d (\beta G) = E d \beta + V d (\beta p) + \sum_{i=1}^c \left( \beta \mu_i \right) d N_i }
where:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G } is the Gibbs energy function
Fixed pressure and temperature: Semigrand esemble
Following the procedure described above we can write:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta G (\beta,\beta p, N_1, N_2, \cdots N_c ) \rightarrow \Phi (\beta, \beta p, N, \beta \mu_{21}, \cdots, \beta \mu_{c1} ) } , where the new thermodynamical Potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi } is given by:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle d\Phi =d\left[\beta G-\sum _{i=2}^{c}(\beta \mu _{i1}N_{i})\right]=Ed\beta +Vd(\beta p)+\beta \mu _{1}dN-\sum _{i=2}^{c}N_{i}d(\beta \mu _{i1}).}