Semi-grand ensembles: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 23: Line 23:


== Semi-grand ensemble at fixed volume and temperature ==
== Semi-grand ensemble at fixed volume and temperature ==
Consider now that we want to consider a system with fixed total number of particles, <math> N </math>
: <math> \left. N = N_1 + N_2 \right. </math>;
but the composition can change, from the thermodynamics we can apply a Legendre's transform [HAVE TO CHECK ACCURACY]
to the differential equation written above in terms of <math> A (T,V,N_1,N_2) </math>.
# Consider the change <math> (N_1,N_2) \rightarrow (N,N_2) </math>

Revision as of 13:08, 5 March 2007

General Features

Semi-grand ensembles are used in Monte Carlo simulation of mixtures.

In this ensembles the total number of molecules is fixed, but the composition can change.

Canonical Ensemble: fixed volume, temperature and number(s) of molecules

We will consider a binary system;. In the Canonical Ensemble, the differential equation energy for the Helmholtz energy function can be written as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \left( \beta A \right) = E d \beta - (\beta p) d V + \sum_{i=1}^2 (\beta \mu_i) d N_i } ,

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A } is the Helmholtz energy function
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \equiv 1/k_B T }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is the absolute temperature
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } is the internal energy
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p } is the pressure
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_i } is the chemical potential of the species "i"
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_i } is the number of molecules of the species "i"

Semi-grand ensemble at fixed volume and temperature

Consider now that we want to consider a system with fixed total number of particles, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. N = N_1 + N_2 \right. } ;

but the composition can change, from the thermodynamics we can apply a Legendre's transform [HAVE TO CHECK ACCURACY] to the differential equation written above in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A (T,V,N_1,N_2) } .

  1. Consider the change Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (N_{1},N_{2})\rightarrow (N,N_{2})}