1-dimensional hard rods: Difference between revisions
No edit summary |
|||
| (43 intermediate revisions by 7 users not shown) | |||
| Line 1: | Line 1: | ||
Hard | '''1-dimensional hard rods''' (sometimes known as a ''Tonks gas'' <ref>[http://dx.doi.org/10.1103/PhysRev.50.955 Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review '''50''' pp. 955- (1936)]</ref>) consist of non-overlapping line segments of length <math>\sigma</math> who all occupy the same line which has length <math>L</math>. One could also think of this model as being a string of [[hard sphere model | hard spheres]] confined to 1 dimension (not to be confused with [[3-dimensional hard rods]]). The model is given by the [[intermolecular pair potential]]: | ||
: <math> \Phi_{12}(x_{i},x_{j})=\left\{ \begin{array}{lll} | |||
0 & ; & |x_{i}-x_{j}|>\sigma\\ \infty & ; & |x_{i}-x_{j}|<\sigma \end{array}\right. </math> | |||
where <math> \left. x_k \right. </math> is the position of the center of the k-th rod, along with an external potential. Thus, the [[Boltzmann factor]] is | |||
: <math>e_{ij}:=e^{-\beta\Phi_{12}(x_{i},x_{j})}=\Theta(|x_{i}-x_{j}|-\sigma)=\left\{ \begin{array}{lll} 1 & ; & |x_{i}-x_{j}|>\sigma\\ 0 & ; & |x_{i}-x_{j}|<\sigma \end{array}\right. </math> | |||
The whole length of the rod must be inside the range: | |||
: <math> V_{0}(x_i) = \left\{ \begin{array}{lll} 0 & ; & \sigma/2 < x_i < L - \sigma/2 \\ | |||
\infty &; & {\mathrm {elsewhere}}. \end{array} \right. </math> | |||
== Canonical Ensemble: Configuration Integral == | == Canonical Ensemble: Configuration Integral == | ||
The [[statistical mechanics]] of this system can be solved exactly. | |||
Consider a system of length <math> \left. L \right. </math> defined in the range <math> \left[ 0, L \right] </math>. The aim is to compute the [[partition function]] of a system of <math> \left. N \right. </math> hard rods of length <math> \left. \sigma \right. </math>. | |||
Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>; | |||
taking into account the pair potential we can write the canonical partition function | |||
of a system of <math> N </math> particles as: | |||
:<math>\begin{align} | |||
\frac{Z\left(N,L\right)}{N!} & =\int_{\sigma/2}^{L-\sigma/2}dx_{0}\int_{\sigma/2}^{L-\sigma/2}dx_{1}\cdots\int_{\sigma/2}^{L-\sigma/2}dx_{N-1}\prod_{i=1}^{N-1}e_{i-1,i}\\ | |||
& =\int_{\sigma/2}^{L+\sigma/2-N\sigma}dx_{0}\int_{x_{0}+\sigma}^{L+\sigma/2-N\sigma+\sigma}dx_{1}\cdots\int_{x_{i-1}+\sigma}^{L+\sigma/2-N\sigma+i\sigma}dx_{i}\cdots\int_{x_{N-2}+\sigma}^{L+\sigma/2-N\sigma+(N-1)\sigma}dx_{N-1}. | |||
\end{align}</math> | |||
Variable change: <math> \left. \omega_k = x_k - \left(k+\frac{1}{2}\right) \sigma \right. </math> ; we get: | |||
:<math>\begin{align} | |||
\frac{Z\left(N,L\right)}{N!} & =\int_{0}^{L-N\sigma}d\omega_{0}\int_{\omega_{0}}^{L-N\sigma}d\omega_{1}\cdots\int_{\omega_{i-1}}^{L-N\sigma}d\omega_{i}\cdots\int_{\omega_{N-2}}^{L-N\sigma}d\omega_{N-1}\\ | |||
& =\int_{0}^{L-N\sigma}d\omega_{0}\cdots\int_{\omega_{i-1}}^{L-N\sigma}d\omega_{i}\frac{(L-N\sigma-\omega_{i})^{N-1-i}}{(N-1-i)!}=\int_{0}^{L-N\sigma}d\omega_{0}\frac{(L-N\sigma-\omega_{0})^{N-1}}{(N-1)!} | |||
\end{align}</math> | |||
Therefore: | |||
:<math> | |||
\frac{ Z \left( N,L \right)}{N!} = \frac{ (L-N\sigma )^{N} }{N!}. | |||
</math> | |||
: <math> | |||
Q(N,L) = \frac{ (L-N \sigma )^N}{\Lambda^N N!}. | |||
</math> | |||
: <math> | == Thermodynamics == | ||
[[Helmholtz energy function]] | |||
: <math> \left. A(N,L,T) = - k_B T \log Q \right. </math> | |||
In the [[thermodynamic limit]] (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = \frac{N}{L} </math>, remaining finite): | |||
: <math> | :<math> A \left( N,L,T \right) = N k_B T \left[ \log \left( \frac{ N \Lambda} { L - N \sigma }\right) - 1 \right]. </math> | ||
== Equation of state == | |||
Using the [[thermodynamic relations]], the [[pressure]] (''linear tension'' in this case) <math> \left. p \right. </math> can | |||
be written as: | |||
:<math> | |||
p = - \left( \frac{ \partial A}{\partial L} \right)_{N,T} = \frac{ N k_B T}{L - N \sigma}; | |||
</math> | |||
The [[compressibility factor]] is | |||
: <math> | :<math> | ||
\frac{ | Z = \frac{p L}{N k_B T} = \frac{1}{ 1 - \eta} = \underbrace{1}_{Z_{\mathrm{id}}}+\underbrace{\frac{\eta}{1-\eta}}_{Z_{\mathrm{ex}}}, | ||
\ | |||
</math> | </math> | ||
where <math> \eta \equiv \frac{ N \sigma}{L} </math>; is the fraction of volume (i.e. length) occupied by the rods. 'id' labels the ideal and 'ex' the excess part. | |||
: <math> | It was shown by van Hove <ref>[http://dx.doi.org/10.1016/0031-8914(50)90072-3 L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, '''16''' pp. 137-143 (1950)]</ref> that there is no [[Solid-liquid phase transitions |fluid-solid phase transition]] for this system (hence the designation ''Tonks gas''). | ||
\frac{ | |||
\ | == Chemical potential == | ||
\ | The [[chemical potential]] is given by | ||
:<math> | |||
\mu=\left(\frac{\partial A}{\partial N}\right)_{L,T}=k_{B}T\left(\ln\frac{\rho\Lambda}{1-\rho\sigma}+\frac{\rho\sigma}{1-\rho\sigma}\right)=k_{B}T\left(\ln\frac{\rho\Lambda}{1-\eta}+\frac{\eta}{1-\eta}\right) | |||
</math> | </math> | ||
with ideal and excess part separated: | |||
<math> | |||
\ | :<math> | ||
\beta\mu=\underbrace{\ln(\rho\Lambda)}_{\beta\mu_{\mathrm{id}}}+\underbrace{\ln\frac{1}{1-\eta}+\frac{\eta}{1-\eta}}_{\beta\mu_{\mathrm{ex}}} | |||
</math> | </math> | ||
== Isobaric ensemble: an alternative derivation == | |||
Adapted from Reference <ref>J. M. Ziman ''Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems'', Cambridge University Press (1979) ISBN 0521292808</ref>. If the rods are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math> the canonical [[partition function]] can also be written as: | |||
: <math> | : <math> | ||
Z= | |||
\int_0^{x_1} d x_0 | |||
\int_0^{x_2} d x_1 | |||
\cdots | |||
\int_0^{L} d x_{N-1} | |||
f(x_1-x_0) | |||
f(x_2-x_1) | |||
\cdots | |||
f(x_0+L-x_{N-1}), | |||
</math> | </math> | ||
where <math>N!</math> does not appear one would have <math>N!</math> analogous expressions | |||
by permuting the label of the (distinguishable) rods. <math>f(x)</math> is the [[Boltzmann factor]] | |||
of the hard rods, which is <math>0</math> if <math>x<\sigma</math> and <math>1</math> otherwise. | |||
A variable change to the distances between rods: <math> y_k = x_k - x_{k-1} </math> results in | |||
: <math> | |||
Z = | |||
\int_0^{\infty} d y_0 | |||
\int_0^{\infty} d y_1 | |||
\cdots | |||
\int_0^{\infty} d y_{N-1} | |||
f(y_0) | |||
f(y_1) | |||
\cdots | |||
f(y_{N-1}) \delta \left( \sum_{i=0}^{N-1} y_i-L \right): | |||
</math> | |||
the distances can take any value as long as they are not below <math>\sigma</math> (as enforced | |||
by <math>f(y)</math>) and as long as they add up to <math>L</math> (as enforced by the [[Dirac_delta_distribution | Dirac delta]]). Writing the later as the inverse [[Laplace transform]] of an exponential: | |||
: <math> | |||
Z = | |||
\int_0^{\infty} d y_0 | |||
\int_0^{\infty} d y_1 | |||
\cdots | |||
\int_0^{\infty} d y_{N-1} | |||
f(y_0) | |||
f(y_1) | |||
\cdots | |||
f(y_{N-1}) | |||
\frac{1}{2\pi i } \int_{-\infty}^{\infty} ds \exp \left[ - s \left(\sum_{i=0}^{N-1} y_i-L \right)\right]. | |||
</math> | |||
Exchanging integrals and expanding the exponential the <math>N</math> integrals decouple: | |||
:<math> | |||
Z = | |||
\frac{1}{2\pi i } \int_{-\infty}^{\infty} ds | |||
e^{ L s } | |||
\left\{ | |||
\int_0^{\infty} d y f(y) e^{ - s y } | |||
\right\}^N. | |||
</math> | |||
We may proceed to invert the Laplace transform (e.g. by means of the residues theorem), but this is not needed: we see our configuration integral is the inverse Laplace transform of another one, | |||
:<math> | |||
Z'(s)= \left\{ \int_0^{\infty} d y f(y) e^{ - s y } \right\}^N, </math> | |||
so that | |||
:<math> | |||
Z'(s) = \int_0^{\infty} ds e^{ L s } Z(L). | |||
</math> | |||
This is precisely the transformation from the configuration integral in the canonical (<math>N,T,L</math>) ensemble to the isobaric (<math>N,T,p</math>) one, if one identifies | |||
<math>s=p/k T</math>. Therefore, the [[Gibbs energy function]] is simply <math>G=-kT\log Z'(p/kT) </math>, which easily evaluated to be <math>G=kT N \log(p/kT)+p\sigma N</math>. The [[chemical potential]] is <math>\mu=G/N</math>, and by means of thermodynamic identities such as <math>\rho=\partial p/\partial \mu</math> one arrives at the same equation of state as the one given above. | |||
==Confined hard rods== | |||
<ref>[http://dx.doi.org/10.1080/00268978600101521 A. Robledo and J. S. Rowlinson "The distribution of hard rods on a line of finite length", Molecular Physics '''58''' pp. 711-721 (1986)]</ref> | |||
==References== | ==References== | ||
<references/> | |||
'''Related reading''' | |||
*[http://dx.doi.org/10.1016/0031-8914(49)90059-2 L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, '''15''' pp. 951-961 (1949)] | |||
*[http://dx.doi.org/10.1063/1.1699116 Zevi W. Salsburg, Robert W. Zwanzig, and John G. Kirkwood "Molecular Distribution Functions in a One-Dimensional Fluid", Journal of Chemical Physics '''21''' pp. 1098-1107 (1953)] | |||
*[http://dx.doi.org/10.1063/1.1699263 Robert L. Sells, C. W. Harris, and Eugene Guth "The Pair Distribution Function for a One-Dimensional Gas", Journal of Chemical Physics '''21''' pp. 1422-1423 (1953)] | |||
*[http://dx.doi.org/10.1063/1.1706788 Donald Koppel "Partition Function for a Generalized Tonks' Gas", Physics of Fluids '''6''' 609 (1963)] | |||
*[http://dx.doi.org/10.1103/PhysRev.171.224 J. L. Lebowitz, J. K. Percus and J. Sykes "Time Evolution of the Total Distribution Function of a One-Dimensional System of Hard Rods", Physical Review '''171''' pp. 224-235 (1968)] | |||
*[http://dx.doi.org/10.1063/1.475640 Gerardo Soto-Campos, David S. Corti, and Howard Reiss "A small system grand ensemble method for the study of hard-particle systems", Journal of Chemical Physics '''108''' pp. 2563-2570 (1998)] | |||
*[http://dx.doi.org/10.3390/e10030248 Paolo V. Giaquinta "Entropy and Ordering of Hard Rods in One Dimension", Entropy '''10''' pp. 248-260 (2008)] | |||
[[Category:Models]] | |||
[[Category:Statistical mechanics]] | |||
Latest revision as of 09:42, 24 April 2021
1-dimensional hard rods (sometimes known as a Tonks gas [1]) consist of non-overlapping line segments of length who all occupy the same line which has length . One could also think of this model as being a string of hard spheres confined to 1 dimension (not to be confused with 3-dimensional hard rods). The model is given by the intermolecular pair potential:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Phi _{12}(x_{i},x_{j})=\left\{{\begin{array}{lll}0&;&|x_{i}-x_{j}|>\sigma \\\infty &;&|x_{i}-x_{j}|<\sigma \end{array}}\right.}
where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.x_{k}\right.} is the position of the center of the k-th rod, along with an external potential. Thus, the Boltzmann factor is
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle e_{ij}:=e^{-\beta \Phi _{12}(x_{i},x_{j})}=\Theta (|x_{i}-x_{j}|-\sigma )=\left\{{\begin{array}{lll}1&;&|x_{i}-x_{j}|>\sigma \\0&;&|x_{i}-x_{j}|<\sigma \end{array}}\right.}
The whole length of the rod must be inside the range:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle V_{0}(x_{i})=\left\{{\begin{array}{lll}0&;&\sigma /2<x_{i}<L-\sigma /2\\\infty &;&{\mathrm {elsewhere} }.\end{array}}\right.}
Canonical Ensemble: Configuration Integral[edit]
The statistical mechanics of this system can be solved exactly. Consider a system of length defined in the range . The aim is to compute the partition function of a system of hard rods of length Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\sigma \right.} . Consider that the particles are ordered according to their label: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 < x_1 < x_2 < \cdots < x_{N-1} } ; taking into account the pair potential we can write the canonical partition function of a system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } particles as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{Z\left(N,L\right)}{N!} & =\int_{\sigma/2}^{L-\sigma/2}dx_{0}\int_{\sigma/2}^{L-\sigma/2}dx_{1}\cdots\int_{\sigma/2}^{L-\sigma/2}dx_{N-1}\prod_{i=1}^{N-1}e_{i-1,i}\\ & =\int_{\sigma/2}^{L+\sigma/2-N\sigma}dx_{0}\int_{x_{0}+\sigma}^{L+\sigma/2-N\sigma+\sigma}dx_{1}\cdots\int_{x_{i-1}+\sigma}^{L+\sigma/2-N\sigma+i\sigma}dx_{i}\cdots\int_{x_{N-2}+\sigma}^{L+\sigma/2-N\sigma+(N-1)\sigma}dx_{N-1}. \end{align}}
Variable change: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \omega_k = x_k - \left(k+\frac{1}{2}\right) \sigma \right. } ; we get:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{Z\left(N,L\right)}{N!} & =\int_{0}^{L-N\sigma}d\omega_{0}\int_{\omega_{0}}^{L-N\sigma}d\omega_{1}\cdots\int_{\omega_{i-1}}^{L-N\sigma}d\omega_{i}\cdots\int_{\omega_{N-2}}^{L-N\sigma}d\omega_{N-1}\\ & =\int_{0}^{L-N\sigma}d\omega_{0}\cdots\int_{\omega_{i-1}}^{L-N\sigma}d\omega_{i}\frac{(L-N\sigma-\omega_{i})^{N-1-i}}{(N-1-i)!}=\int_{0}^{L-N\sigma}d\omega_{0}\frac{(L-N\sigma-\omega_{0})^{N-1}}{(N-1)!} \end{align}}
Therefore:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \frac{ (L-N\sigma )^{N} }{N!}. }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q(N,L) = \frac{ (L-N \sigma )^N}{\Lambda^N N!}. }
Thermodynamics[edit]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A(N,L,T) = - k_B T \log Q \right. }
In the thermodynamic limit (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \rightarrow \infty; L \rightarrow \infty} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \frac{N}{L} } , remaining finite):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \left( N,L,T \right) = N k_B T \left[ \log \left( \frac{ N \Lambda} { L - N \sigma }\right) - 1 \right]. }
Equation of state[edit]
Using the thermodynamic relations, the pressure (linear tension in this case) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p \right. } can be written as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p = - \left( \frac{ \partial A}{\partial L} \right)_{N,T} = \frac{ N k_B T}{L - N \sigma}; }
The compressibility factor is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \frac{p L}{N k_B T} = \frac{1}{ 1 - \eta} = \underbrace{1}_{Z_{\mathrm{id}}}+\underbrace{\frac{\eta}{1-\eta}}_{Z_{\mathrm{ex}}}, }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta \equiv \frac{ N \sigma}{L} } ; is the fraction of volume (i.e. length) occupied by the rods. 'id' labels the ideal and 'ex' the excess part.
It was shown by van Hove [2] that there is no fluid-solid phase transition for this system (hence the designation Tonks gas).
Chemical potential[edit]
The chemical potential is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=\left(\frac{\partial A}{\partial N}\right)_{L,T}=k_{B}T\left(\ln\frac{\rho\Lambda}{1-\rho\sigma}+\frac{\rho\sigma}{1-\rho\sigma}\right)=k_{B}T\left(\ln\frac{\rho\Lambda}{1-\eta}+\frac{\eta}{1-\eta}\right) }
with ideal and excess part separated:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta\mu=\underbrace{\ln(\rho\Lambda)}_{\beta\mu_{\mathrm{id}}}+\underbrace{\ln\frac{1}{1-\eta}+\frac{\eta}{1-\eta}}_{\beta\mu_{\mathrm{ex}}} }
Isobaric ensemble: an alternative derivation[edit]
Adapted from Reference [3]. If the rods are ordered according to their label: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 < x_1 < x_2 < \cdots < x_{N-1} } the canonical partition function can also be written as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z= \int_0^{x_1} d x_0 \int_0^{x_2} d x_1 \cdots \int_0^{L} d x_{N-1} f(x_1-x_0) f(x_2-x_1) \cdots f(x_0+L-x_{N-1}), }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N!} does not appear one would have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N!} analogous expressions by permuting the label of the (distinguishable) rods. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is the Boltzmann factor of the hard rods, which is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x<\sigma} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} otherwise.
A variable change to the distances between rods: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_k = x_k - x_{k-1} } results in
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \int_0^{\infty} d y_0 \int_0^{\infty} d y_1 \cdots \int_0^{\infty} d y_{N-1} f(y_0) f(y_1) \cdots f(y_{N-1}) \delta \left( \sum_{i=0}^{N-1} y_i-L \right): }
the distances can take any value as long as they are not below Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} (as enforced by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(y)} ) and as long as they add up to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} (as enforced by the Dirac delta). Writing the later as the inverse Laplace transform of an exponential:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \int_0^{\infty} d y_0 \int_0^{\infty} d y_1 \cdots \int_0^{\infty} d y_{N-1} f(y_0) f(y_1) \cdots f(y_{N-1}) \frac{1}{2\pi i } \int_{-\infty}^{\infty} ds \exp \left[ - s \left(\sum_{i=0}^{N-1} y_i-L \right)\right]. }
Exchanging integrals and expanding the exponential the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} integrals decouple:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \frac{1}{2\pi i } \int_{-\infty}^{\infty} ds e^{ L s } \left\{ \int_0^{\infty} d y f(y) e^{ - s y } \right\}^N. }
We may proceed to invert the Laplace transform (e.g. by means of the residues theorem), but this is not needed: we see our configuration integral is the inverse Laplace transform of another one,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z'(s)= \left\{ \int_0^{\infty} d y f(y) e^{ - s y } \right\}^N, }
so that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z'(s) = \int_0^{\infty} ds e^{ L s } Z(L). }
This is precisely the transformation from the configuration integral in the canonical (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N,T,L} ) ensemble to the isobaric (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N,T,p} ) one, if one identifies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=p/k T} . Therefore, the Gibbs energy function is simply Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G=-kT\log Z'(p/kT) } , which easily evaluated to be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G=kT N \log(p/kT)+p\sigma N} . The chemical potential is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=G/N} , and by means of thermodynamic identities such as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho=\partial p/\partial \mu} one arrives at the same equation of state as the one given above.
Confined hard rods[edit]
References[edit]
- ↑ Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- ↑ L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)
- ↑ J. M. Ziman Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems, Cambridge University Press (1979) ISBN 0521292808
- ↑ A. Robledo and J. S. Rowlinson "The distribution of hard rods on a line of finite length", Molecular Physics 58 pp. 711-721 (1986)
Related reading
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- Zevi W. Salsburg, Robert W. Zwanzig, and John G. Kirkwood "Molecular Distribution Functions in a One-Dimensional Fluid", Journal of Chemical Physics 21 pp. 1098-1107 (1953)
- Robert L. Sells, C. W. Harris, and Eugene Guth "The Pair Distribution Function for a One-Dimensional Gas", Journal of Chemical Physics 21 pp. 1422-1423 (1953)
- Donald Koppel "Partition Function for a Generalized Tonks' Gas", Physics of Fluids 6 609 (1963)
- J. L. Lebowitz, J. K. Percus and J. Sykes "Time Evolution of the Total Distribution Function of a One-Dimensional System of Hard Rods", Physical Review 171 pp. 224-235 (1968)
- Gerardo Soto-Campos, David S. Corti, and Howard Reiss "A small system grand ensemble method for the study of hard-particle systems", Journal of Chemical Physics 108 pp. 2563-2570 (1998)
- Paolo V. Giaquinta "Entropy and Ordering of Hard Rods in One Dimension", Entropy 10 pp. 248-260 (2008)