Navier-Stokes equations: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page with NS equations)
 
(Other form for the mom. eq.)
 
(2 intermediate revisions by 2 users not shown)
Line 22: Line 22:


where <math>\mathbf{f} </math> is a volumetric force (e.g. <math>\rho g</math> for gravity), and <math>\mathbb{T} </math> is the stress tensor.
where <math>\mathbf{f} </math> is a volumetric force (e.g. <math>\rho g</math> for gravity), and <math>\mathbb{T} </math> is the stress tensor.
Another form of the equation, more similar in form to the continuity equation, stresses the fact that the '''momentum density''' is conserved. For each of the three Cartesian coordinates <math>\alpha=1,2,3</math>:
:<math>  \frac{\partial \rho v_\alpha}{\partial t}  +
    \nabla \cdot {\rho v_\alpha \mathbf{v}} =
  -\frac{\partial p}{\partial x_\alpha} +
\sum_\beta \frac{\partial }{\partial x_\beta}  \mathbb{T}_{\beta\alpha} + f_\alpha. </math>
In vector form:
:<math>  \frac{\partial \rho v_\alpha}{\partial t}  +
    \nabla \cdot {\rho \mathbf{v} \mathbf{v}} =
  -\nabla p + \nabla\cdot\mathbb{T} + \mathbf{f}. </math>
The term <math> \mathbf{v} \mathbf{v} </math> is a dyad (direct tensor product).
==Stress==


The vector quantity <math> \nabla \cdot\mathbb{T} </math> is the ''shear stress''. For a Newtonian incompressible fluid,
The vector quantity <math> \nabla \cdot\mathbb{T} </math> is the ''shear stress''. For a Newtonian incompressible fluid,
Line 32: Line 49:


:<math> \rho \left(\frac{D \mathbf{v}}{D t}  \right) = -\nabla p + \mathbf{f} . </math>
:<math> \rho \left(\frac{D \mathbf{v}}{D t}  \right) = -\nabla p + \mathbf{f} . </math>
==References==
<references/>
[[Category: classical mechanics]]

Latest revision as of 16:32, 17 May 2010

Continuity[edit]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 }

or, using the substantive derivative:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{D\rho}{Dt} + \rho (\nabla \cdot \mathbf{v}) = 0. }

For an incompressible fluid, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} is constant, hence the velocity field must be divergence-free:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \cdot \mathbf{v} =0. }

Momentum[edit]

(Also known as the Navier-Stokes equation.)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \nabla \cdot\mathbb{T} + \mathbf{f}, }

or, using the substantive derivative:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho \left(\frac{D \mathbf{v}}{D t} \right) = -\nabla p + \nabla \cdot\mathbb{T} + \mathbf{f}, }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{f} } is a volumetric force (e.g. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho g} for gravity), and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{T} } is the stress tensor.

Another form of the equation, more similar in form to the continuity equation, stresses the fact that the momentum density is conserved. For each of the three Cartesian coordinates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=1,2,3} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \rho v_\alpha}{\partial t} + \nabla \cdot {\rho v_\alpha \mathbf{v}} = -\frac{\partial p}{\partial x_\alpha} + \sum_\beta \frac{\partial }{\partial x_\beta} \mathbb{T}_{\beta\alpha} + f_\alpha. }

In vector form:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \rho v_\alpha}{\partial t} + \nabla \cdot {\rho \mathbf{v} \mathbf{v}} = -\nabla p + \nabla\cdot\mathbb{T} + \mathbf{f}. }

The term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{v} \mathbf{v} } is a dyad (direct tensor product).

Stress[edit]

The vector quantity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \cdot\mathbb{T} } is the shear stress. For a Newtonian incompressible fluid,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \mathbb{T} = \mu \nabla^2 \mathbf{v}, }

with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} being the (dynamic) viscosity.

For an inviscid fluid, the momentum equation becomes Euler's equation for ideal fluids:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho \left(\frac{D \mathbf{v}}{D t} \right) = -\nabla p + \mathbf{f} . }

References[edit]