Hard superball model: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| No edit summary | No edit summary | ||
| Line 6: | Line 6: | ||
| where ''x'', ''y'' and ''z'' are scaled Cartesian coordinates with ''q'' the deformation parameter and radius ''a''. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (''q'' = 0.5) and the cube (''q'' = ∞) via the sphere (''q'' = 1) as shown in the left figure. | where ''x'', ''y'' and ''z'' are scaled Cartesian coordinates with ''q'' the deformation parameter and radius ''a''. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (''q'' = 0.5) and the cube (''q'' = ∞) via the sphere (''q'' = 1) as shown in the left figure. | ||
| == Particle Volume  ==  | |||
| The volume of a superball with the shape parameter "q" and radius "a" is given by | |||
| :<math> | |||
| \begin{eqnarray} | |||
|          v(q,a) & =  & 8 a^3 \int_{0}^1 \int_{0}^{(1-x^{2q})^{1/2q}} (1-x^{2q}-y^{2q})^{1/2q} \mathrm{d}\, y \, \mathrm{d}\, x \nonumber\\ | |||
|          & = & \frac{8a^3\left[ \Gamma\left(1+1/2q\right) \right]^3}{\Gamma\left(1+ 3/2q\right)}, | |||
| \end{eqnarray} | |||
| </math> | |||
Revision as of 20:03, 16 September 2012

A superball is defined by the inequality
where x, y and z are scaled Cartesian coordinates with q the deformation parameter and radius a. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (q = 0.5) and the cube (q = ∞) via the sphere (q = 1) as shown in the left figure.
Particle Volume
The volume of a superball with the shape parameter "q" and radius "a" is given by
- Failed to parse (unknown function "\begin{eqnarray}"): {\displaystyle \begin{eqnarray} v(q,a) & = & 8 a^3 \int_{0}^1 \int_{0}^{(1-x^{2q})^{1/2q}} (1-x^{2q}-y^{2q})^{1/2q} \mathrm{d}\, y \, \mathrm{d}\, x \nonumber\\ & = & \frac{8a^3\left[ \Gamma\left(1+1/2q\right) \right]^3}{\Gamma\left(1+ 3/2q\right)}, \end{eqnarray} }