Editing Hard sphere model
Jump to navigation
Jump to search
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 18: | Line 18: | ||
<ref>[http://dx.doi.org/10.1063/1.1743957 B. J. Alder and T. E. Wainwright "Phase Transition for a Hard Sphere System", Journal of Chemical Physics '''27''' pp. 1208-1209 (1957)]</ref>, much of this work undertaken at the Los Alamos Scientific Laboratory on the world's first electronic digital computer ENIAC <ref>[http://ftp.arl.army.mil/~mike/comphist/eniac-story.html The ENIAC Story]</ref>. | <ref>[http://dx.doi.org/10.1063/1.1743957 B. J. Alder and T. E. Wainwright "Phase Transition for a Hard Sphere System", Journal of Chemical Physics '''27''' pp. 1208-1209 (1957)]</ref>, much of this work undertaken at the Los Alamos Scientific Laboratory on the world's first electronic digital computer ENIAC <ref>[http://ftp.arl.army.mil/~mike/comphist/eniac-story.html The ENIAC Story]</ref>. | ||
==Liquid phase radial distribution function== | ==Liquid phase radial distribution function== | ||
The following are a series of plots of the hard sphere [[radial distribution function]] <ref>The [[total correlation function]] data was produced using the [ | The following are a series of plots of the hard sphere [[radial distribution function]] <ref>The [[total correlation function]] data was produced using the [http://www.vscht.cz/fch/software/hsmd/hspline-8-2004.zip computer code] written by [http://www.vscht.cz/fch/en/people/Jiri.Kolafa.html Jiří Kolafa]</ref> shown for different values of the number density <math>\rho</math>. The horizontal axis is in units of <math>\sigma</math> where <math>\sigma</math> is set to be 1. Click on image of interest to see a larger view. | ||
:{| border="1" | :{| border="1" | ||
|- | |- | ||
Line 31: | Line 31: | ||
where the [[second virial coefficient]], <math>B_2</math>, is given by | where the [[second virial coefficient]], <math>B_2</math>, is given by | ||
:<math>B_2 = \frac{2\pi}{3}\sigma^3</math>. | :<math>B_2 = \frac{2\pi}{3}\sigma^3</math>. | ||
Carnahan and Starling <ref>[http://dx.doi.org/10.1063/1.1672048 N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres" Journal of Chemical Physics '''51''' pp. 635-636 (1969)]</ref> provided the following expression for <math>{\mathrm g}(\sigma^+)</math> (Eq. 3 in <ref name="Tao1" ></ref>) | Carnahan and Starling <ref>[http://dx.doi.org/10.1063/1.1672048 N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres" Journal of Chemical Physics '''51''' pp. 635-636 (1969)]</ref> provided the following expression for <math>{\mathrm g}(\sigma^+)</math> (Eq. 3 in <ref name="Tao1" > </ref>) | ||
:<math>{\mathrm g}(\sigma^+)= \frac{1-\eta/2}{(1-\eta)^3}</math> | :<math>{\mathrm g}(\sigma^+)= \frac{1-\eta/2}{(1-\eta)^3}</math> | ||
where <math>\eta</math> is the [[packing fraction]]. | where <math>\eta</math> is the [[packing fraction]]. | ||
Line 50: | Line 50: | ||
The hard sphere system undergoes a [[Solid-liquid phase transitions |liquid-solid]] [[First-order transitions |first order transition]] <ref name="HooverRee">[http://dx.doi.org/10.1063/1.1670641 William G. Hoover and Francis H. Ree "Melting Transition and Communal Entropy for Hard Spheres", Journal of Chemical Physics '''49''' pp. 3609-3617 (1968)]</ref> | The hard sphere system undergoes a [[Solid-liquid phase transitions |liquid-solid]] [[First-order transitions |first order transition]] <ref name="HooverRee">[http://dx.doi.org/10.1063/1.1670641 William G. Hoover and Francis H. Ree "Melting Transition and Communal Entropy for Hard Spheres", Journal of Chemical Physics '''49''' pp. 3609-3617 (1968)]</ref> | ||
<ref>[http://dx.doi.org/10.1063/1.4870524 Miguel Robles, Mariano López de Haro and Andrés Santos "Note: Equation of state and the freezing point in the hard-sphere model", Journal of Chemical Physics '''140''' 136101 (2014)]</ref>, sometimes referred to as the Kirkwood-Alder transition <ref name="GastRussel">[http://dx.doi.org/10.1063/1.882495 Alice P. Gast and William B. Russel "Simple Ordering in Complex Fluids", Physics Today '''51''' (12) pp. 24-30 (1998)]</ref>. | <ref>[http://dx.doi.org/10.1063/1.4870524 Miguel Robles, Mariano López de Haro and Andrés Santos "Note: Equation of state and the freezing point in the hard-sphere model", Journal of Chemical Physics '''140''' 136101 (2014)]</ref>, sometimes referred to as the Kirkwood-Alder transition <ref name="GastRussel">[http://dx.doi.org/10.1063/1.882495 Alice P. Gast and William B. Russel "Simple Ordering in Complex Fluids", Physics Today '''51''' (12) pp. 24-30 (1998)]</ref>. | ||
The liquid-solid coexistence densities (<math>\rho^* = \rho \sigma^3 | The liquid-solid coexistence densities (<math>\rho^* = \rho \sigma^3</math>) has been calculated to be | ||
:{| border="1" | :{| border="1" | ||
|- | |- | ||
| <math>\rho^*_{\mathrm {solid}}</math> || <math>\rho^*_{\mathrm {liquid}}</math> || Reference | | <math>\rho^*_{\mathrm {solid}}</math> || <math>\rho^*_{\mathrm {liquid}}</math> || Reference | ||
|- | |- | ||
| 1.041 | | 1.041|| 0.945 || <ref name="HooverRee"> </ref> | ||
|- | |- | ||
| 1.0376|| 0.9391 || <ref name="FrenkelSmitBook">Daan Frenkel and Berend Smit "Understanding Molecular Simulation: From Algorithms to Applications", Second Edition (2002) (ISBN 0-12-267351-4) p. 261.</ref> | | 1.0376|| 0.9391 || <ref name="FrenkelSmitBook">Daan Frenkel and Berend Smit "Understanding Molecular Simulation: From Algorithms to Applications", Second Edition (2002) (ISBN 0-12-267351-4) p. 261.</ref> | ||
Line 67: | Line 67: | ||
| 1.037 || 0.938 || <ref>[http://dx.doi.org/10.1063/1.476396 Ruslan L. Davidchack and Brian B. Laird "Simulation of the hard-sphere crystal–melt interface", Journal of Chemical Physics '''108''' pp. 9452-9462 (1998)]</ref> | | 1.037 || 0.938 || <ref>[http://dx.doi.org/10.1063/1.476396 Ruslan L. Davidchack and Brian B. Laird "Simulation of the hard-sphere crystal–melt interface", Journal of Chemical Physics '''108''' pp. 9452-9462 (1998)]</ref> | ||
|- | |- | ||
| 1. | | 1.035(3) || 0.936(2) || <ref name="Miguel"> [http://dx.doi.org/10.1063/1.3023062 Enrique de Miguel "Estimating errors in free energy calculations from thermodynamic integration using fitted data", Journal of Chemical Physics '''129''' 214112 (2008)]</ref> | ||
|} | |} | ||
The coexistence [[pressure]] has been calculated to be | The coexistence [[pressure]] has been calculated to be | ||
Line 78: | Line 76: | ||
| 11.5727(10)|| <ref name="FernandezUCM">[http://dx.doi.org/10.1103/PhysRevLett.108.165701 L. A. Fernández, V. Martín-Mayor, B. Seoane, and P. Verrocchio "Equilibrium Fluid-Solid Coexistence of Hard Spheres", Physical Review Letters '''108''' 165701 (2012)]</ref> | | 11.5727(10)|| <ref name="FernandezUCM">[http://dx.doi.org/10.1103/PhysRevLett.108.165701 L. A. Fernández, V. Martín-Mayor, B. Seoane, and P. Verrocchio "Equilibrium Fluid-Solid Coexistence of Hard Spheres", Physical Review Letters '''108''' 165701 (2012)]</ref> | ||
|- | |- | ||
| 11.57(10) || <ref name="Fortini"></ref> | | 11.57(10) || <ref name="Fortini"> </ref> | ||
|- | |- | ||
| 11.567|| <ref name="FrenkelSmitBook"></ref> | | 11.567|| <ref name="FrenkelSmitBook"> </ref> | ||
|- | |- | ||
| 11.55(11) || <ref>[http://dx.doi.org/10.1088/0953-8984/9/41/006 Robin J. Speedy "Pressure of the metastable hard-sphere fluid", Journal of Physics: Condensed Matter '''9''' pp. 8591-8599 (1997)]</ref> | | 11.55(11) || <ref>[http://dx.doi.org/10.1088/0953-8984/9/41/006 Robin J. Speedy "Pressure of the metastable hard-sphere fluid", Journal of Physics: Condensed Matter '''9''' pp. 8591-8599 (1997)]</ref> | ||
|- | |- | ||
| 11.54(4) || <ref name="Noya"></ref> | | 11.54(4) || <ref name="Noya"> </ref> | ||
|- | |- | ||
| 11.50(9) || <ref>[http://dx.doi.org/10.1103/PhysRevLett.85.5138 N. B. Wilding and A. D. Bruce "Freezing by Monte Carlo Phase Switch", Physical Review Letters '''85''' pp. 5138-5141 (2000)]</ref> | | 11.50(9) || <ref>[http://dx.doi.org/10.1103/PhysRevLett.85.5138 N. B. Wilding and A. D. Bruce "Freezing by Monte Carlo Phase Switch", Physical Review Letters '''85''' pp. 5138-5141 (2000)]</ref> | ||
|- | |- | ||
| 11.48(11) || <ref name="Miguel"></ref> | | 11.48(11) || <ref name="Miguel"> </ref> | ||
|- | |- | ||
| 11.43(17) || <ref>[http://dx.doi.org/10.1063/1.3244562 G. Odriozola "Replica exchange Monte Carlo applied to hard spheres", Journal of Chemical Physics '''131''' 144107 (2009)]</ref> | | 11.43(17) || <ref>[http://dx.doi.org/10.1063/1.3244562 G. Odriozola "Replica exchange Monte Carlo applied to hard spheres", Journal of Chemical Physics '''131''' 144107 (2009)]</ref> | ||
|} | |} | ||
The coexistence [[chemical potential]] has been calculated to be | The coexistence [[chemical potential]] has been calculated to be | ||
Line 99: | Line 95: | ||
| <math>\mu (k_BT) </math> || Reference | | <math>\mu (k_BT) </math> || Reference | ||
|- | |- | ||
| 15.980(11) || <ref name="Miguel | | 15.980(11) || <ref name="Miguel"> </ref> | ||
|} | |} | ||
The [[Helmholtz energy function]] (in units of <math>Nk_BT</math>) is given by | The [[Helmholtz energy function]] (in units of <math>Nk_BT</math>) is given by | ||
Line 108: | Line 102: | ||
| <math>A_{\mathrm {solid}}</math> || <math>A_{\mathrm {liquid}}</math> || Reference | | <math>A_{\mathrm {solid}}</math> || <math>A_{\mathrm {liquid}}</math> || Reference | ||
|- | |- | ||
| 4.887(3) || 3.719(8) || <ref name="Miguel"></ref> | | 4.887(3) || 3.719(8) || <ref name="Miguel"> </ref> | ||
|} | |} | ||
==Helmholtz energy function== | ==Helmholtz energy function== | ||
Line 119: | Line 111: | ||
| <math>\rho^*</math> || <math>A/(Nk_BT)</math>|| Reference | | <math>\rho^*</math> || <math>A/(Nk_BT)</math>|| Reference | ||
|- | |- | ||
| 0.25 || | | 0.25 || 0.620 <math>\pm</math> 0.002 || Table I <ref name="Schilling"> [http://dx.doi.org/10.1063/1.3274951 T. Schilling and F. Schmid "Computing absolute free energies of disordered structures by molecular simulation", Journal of Chemical Physics '''131''' 231102 (2009)]</ref> | ||
|- | |- | ||
| 0.50 || | | 0.50 || 1.541 <math>\pm</math> 0.002 || Table I <ref name="Schilling"> </ref> | ||
|- | |- | ||
| 0.75 || | | 0.75 || 3.009 <math>\pm</math> 0.002 || Table I <ref name="Schilling"> </ref> | ||
|- | |- | ||
| 1.04086 || 4.959 || Table VI <ref name="VegaNoya"></ref> | | 1.04086 || 4.959 || Table VI <ref name="VegaNoya"> </ref> | ||
|- | |- | ||
| 1.099975 || 5.631 || Table VI <ref name="VegaNoya"></ref> | | 1.099975 || 5.631 || Table VI <ref name="VegaNoya"> </ref> | ||
|- | |- | ||
| 1.150000 || 6.274 || Table VI <ref name="VegaNoya"></ref> | | 1.150000 || 6.274 || Table VI <ref name="VegaNoya"> </ref> | ||
|} | |} | ||
==Interfacial Helmholtz energy function== | ==Interfacial Helmholtz energy function== | ||
The [[Helmholtz energy function]] of the solid–liquid [[interface]] has been calculated using the [[cleaving method]] giving (Ref. <ref>[http://dx.doi.org/10.1063/1.3514144 Ruslan L. Davidchack "Hard spheres revisited: Accurate calculation of the solid–liquid interfacial free energy", Journal of Chemical Physics '''133''' 234701 (2010)]</ref> Table I): | The [[Helmholtz energy function]] of the solid–liquid [[interface]] has been calculated using the [[cleaving method]] giving (Ref. <ref>[http://dx.doi.org/10.1063/1.3514144 Ruslan L. Davidchack "Hard spheres revisited: Accurate calculation of the solid–liquid interfacial free energy", Journal of Chemical Physics '''133''' 234701 (2010)]</ref> Table I): | ||
Line 142: | Line 131: | ||
| <math>\gamma_{\{100\}}</math> || 0.5820(19) | | <math>\gamma_{\{100\}}</math> || 0.5820(19) | ||
|- | |- | ||
| <math>\gamma_{\{100\}}</math> || 0.636(11) <ref name= | | <math>\gamma_{\{100\}}</math> || 0.636(11) <ref name=FernandezUCM"> </ref> | ||
|- | |- | ||
| <math>\gamma_{\{110\}}</math> || 0.5590(20) | | <math>\gamma_{\{110\}}</math> || 0.5590(20) | ||
Line 152: | Line 141: | ||
==Solid structure== | ==Solid structure== | ||
The [http://mathworld.wolfram.com/KeplerConjecture.html Kepler conjecture] states that the optimal packing for three dimensional spheres is either cubic or hexagonal close [[Lattice Structures | packing]], both of which have maximum densities of <math>\pi/(3 \sqrt{2}) \approx | The [http://mathworld.wolfram.com/KeplerConjecture.html Kepler conjecture] states that the optimal packing for three dimensional spheres is either cubic or hexagonal close [[Lattice Structures | packing]], both of which have maximum densities of <math>\pi/(3 \sqrt{2}) \approx 0.74048%</math> <ref>[http://dx.doi.org/10.1038/26609 Neil J. A. Sloane "Kepler's conjecture confirmed", Nature '''395''' pp. 435-436 (1998)]</ref> | ||
<ref>[http://dx.doi.org/10.1103/PhysRevE.52.3632 C. F. Tejero, M. S. Ripoll, and A. Pérez "Pressure of the hard-sphere solid", Physical Review E '''52''' pp. 3632-3636 (1995)]</ref>. However, for hard spheres at close packing the [[Building up a face centered cubic lattice |face centred cubic]] phase is the more stable | <ref>[http://dx.doi.org/10.1103/PhysRevE.52.3632 C. F. Tejero, M. S. Ripoll, and A. Pérez "Pressure of the hard-sphere solid", Physical Review E '''52''' pp. 3632-3636 (1995)]</ref>. However, for hard spheres at close packing the [[Building up a face centered cubic lattice |face centred cubic]] phase is the more stable | ||
<ref>[http://dx.doi.org/10.1039/a701761h Leslie V. Woodcock "Computation of the free energy for alternative crystal structures of hard spheres", Faraday Discussions '''106''' pp. 325-338 (1997)]</ref> | <ref>[http://dx.doi.org/10.1039/a701761h Leslie V. Woodcock "Computation of the free energy for alternative crystal structures of hard spheres", Faraday Discussions '''106''' pp. 325 - 338 (1997)]</ref> | ||
*See also: [[Equations of state for crystals of hard spheres]] | *See also: [[Equations of state for crystals of hard spheres]] | ||
==Direct correlation function== | ==Direct correlation function== | ||
For the [[direct correlation function]] see: | For the [[direct correlation function]] see: |