Editing Hard sphere model
Jump to navigation
Jump to search
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 155: | Line 155: | ||
<ref>[https://www.newscientist.com/article/dn26041-proof-confirmed-of-400-year-old-fruit-stacking-problem/ Jacob Aron "Proof confirmed of 400-year-old fruit-stacking problem", New Scientist daily news 12 August (2014)]</ref> | <ref>[https://www.newscientist.com/article/dn26041-proof-confirmed-of-400-year-old-fruit-stacking-problem/ Jacob Aron "Proof confirmed of 400-year-old fruit-stacking problem", New Scientist daily news 12 August (2014)]</ref> | ||
<ref>[http://dx.doi.org/10.1103/PhysRevE.52.3632 C. F. Tejero, M. S. Ripoll, and A. Pérez "Pressure of the hard-sphere solid", Physical Review E '''52''' pp. 3632-3636 (1995)]</ref>. However, for hard spheres at close packing the [[Building up a face centered cubic lattice |face centred cubic]] phase is the more stable | <ref>[http://dx.doi.org/10.1103/PhysRevE.52.3632 C. F. Tejero, M. S. Ripoll, and A. Pérez "Pressure of the hard-sphere solid", Physical Review E '''52''' pp. 3632-3636 (1995)]</ref>. However, for hard spheres at close packing the [[Building up a face centered cubic lattice |face centred cubic]] phase is the more stable | ||
<ref>[http://dx.doi.org/10.1039/a701761h Leslie V. Woodcock "Computation of the free energy for alternative crystal structures of hard spheres", Faraday Discussions '''106''' pp. 325-338 (1997)]</ref>, with a [[Helmholtz energy function]] difference in the [[thermodynamic limit]] between the hexagonal close packed and face centered cubic crystals at close packing of 0.001164(8) <math>Nk_BT</math><ref>[http://dx.doi.org/10.1080/00268976.2014.982736 Eva G. Noya and Noé G. Almarza "Entropy of hard spheres in the close-packing limit", Molecular Physics '''113''' pp. 1061-1068 (2015)]</ref>. | <ref>[http://dx.doi.org/10.1039/a701761h Leslie V. Woodcock "Computation of the free energy for alternative crystal structures of hard spheres", Faraday Discussions '''106''' pp. 325-338 (1997)]</ref>, with a [[Helmholtz energy function]] difference in the [[thermodynamic limit]] between the hexagonal close packed and face centered cubic crystals at close packing of 0.001164(8) <math>Nk_BT</math><ref>[http://dx.doi.org/10.1080/00268976.2014.982736 Eva G. Noya and Noé G. Almarza "Entropy of hard spheres in the close-packing limit", Molecular Physics '''113''' pp. 1061-1068 (2015)]</ref>. | ||
*See also: [[Equations of state for crystals of hard spheres]] | *See also: [[Equations of state for crystals of hard spheres]] | ||