Editing Dendrimers

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
[[Image:single_dendrimer.png|thumb|right|A single dendrimer molecule (G4 [[PAMAM (dendrimer) | PAMAM]], solvent not shown)]]
'''Dendrimers'''. Dendrimers can be characterised by three parameters: functionality (<math>f</math>), spacer length (<math>P</math>) and number of generations (<math>G</math>). The number of monomers (<math>N</math>) in a dendrimer is given by
'''Dendrimers''' (from the aincient greek δένδρον, meaning tree <ref>[http://dx.doi.org/10.1002/anie.199001381 Donald A. Tomalia, Adel M. Naylor and William A. Goddard III "Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter", Angewandte Chemie International Edition in English '''29''' pp. 138-175 (1990)]</ref>). Dendrimers can be characterised by three parameters: functionality (<math>f</math>), spacer length (<math>P</math>) and number of generations (<math>G</math>). The number of monomers (<math>N</math>) in a dendrimer is given by


:<math>N= 1 +fP \frac{(f-1)^{G+1}-1}{f-2}</math>
:<math>N= 1 +fP \frac{(f-1)^{G+1}-1}{f-2}</math>
==Density profile==
==Density profile==
====Dense shell model====
====Dense shell model====
de Gennes and Hervet <ref>[http://dx.doi.org/10.1051/jphyslet:01983004409035100 P. G. de Gennes and H. Hervet "Statistics of «starburst» polymers", Journal de Physique Lettres '''44''' pp. 351-360 (1983)]</ref> calculated that for self-avoiding dendrimers in a good solvent, the density profile increases from a minimum at the centre of the dendrimer to a maximum at its outer surface, i.e. a dense outer shell with a hollow centre. Note this leads to a limit of
<ref>[http://dx.doi.org/10.1051/jphyslet:01983004409035100 P. G. de Gennes and H. Hervet "Statistics of «starburst» polymers", Journal de Physique Lettres '''44''' pp. 351-360 (1983)]</ref>
 
:<math>G_{\mathrm{max}} \approx 2.88 (\ln P + 1.5) </math>
 
However, recent work by Zook and Pickett <ref>[http://dx.doi.org/10.1103/PhysRevLett.90.015502 Thomas C. Zook and Galen T. Pickett "Hollow-Core Dendrimers Revisited", Physical Review Letters '''90''' 015502 (2003)]</ref> has shown that the de Gennes and Hervet model was flawed.
 
====Dense core model====
====Dense core model====
Most studies support the dense core model of Lescanec and Muthukumar<ref>[http://dx.doi.org/10.1021/ma00210a026 Robert L. Lescanec and M. Muthukumar "Configurational characteristics and scaling behavior of starburst molecules: a computational study", Macromolecules '''23''' pp. 2280-2288 (1990)]</ref>
Most studies support the dense core model of Lescanec and Muthukumar<ref>[http://dx.doi.org/10.1021/ma00210a026 Robert L. Lescanec and M. Muthukumar "Configurational characteristics and scaling behavior of starburst molecules: a computational study", Macromolecules '''23''' pp. 2280-2288 (1990)]</ref>
despite early uptake of the dense shell model.
<ref>[http://dx.doi.org/10.1021/ma960397k David Boris and Michael Rubinstein "A Self-Consistent Mean Field Model of a Starburst Dendrimer:  Dense Core vs Dense Shell", Macromolecules '''29''' pp. 7251-7260 (1996)]</ref> despite early uptake of the dense shell model.
Boris and Rubinstein pointed out that the structure of the dendrimer is a result of the competition between the [[entropy]] and [[excluded volume]]
<ref>[http://dx.doi.org/10.1021/ma960397k David Boris and Michael Rubinstein "A Self-Consistent Mean Field Model of a Starburst Dendrimer:  Dense Core vs Dense Shell", Macromolecules '''29''' pp. 7251-7260 (1996)]</ref>, neither of which terms favouring a hollow centre.


==Radius of gyration==
==Radius of gyration==
Line 22: Line 14:
:<math>R_G \propto N^{1/3}</math>
:<math>R_G \propto N^{1/3}</math>


where <math>N</math> is the number of monomers. This implies a compact structure.
where <math>N</math> is the number of monomers.
====Ideal dendrimer====
====Ideal dendrimer====
For an ''ideal'' dendrimer, consisting of non-interacting monomers, <math>R_G</math> is given by <ref>[http://dx.doi.org/10.1039/FT9969204151 Wilfried Carl "A Monte Carlo study of model dendrimers", Journal of the Chemical Society, Faraday Transactions '''92''' pp. 4151-4154 (1996)]</ref>
For an ''ideal'' dendrimer, consisting of non-interacting monomers, is given by <ref>[http://dx.doi.org/10.1039/FT9969204151 Wilfried Carl "A Monte Carlo study of model dendrimers", Journal of the Chemical Society, Faraday Transactions '''92''' pp. 4151-4154 (1996)]</ref>
 
 
:<math>R_{G \mathrm{ideal} } \propto \sqrt{PG}</math>
 
====Chen-Cui scaling law====
The Chen-Cui scaling law is given by <ref>[http://dx.doi.org/10.1021/ma9514636 Zheng Yu Chen and Shi-Min Cui "Monte Carlo Simulations of Star-Burst Dendrimers", Macromolecules '''29''' pp. 7943-7952 (1996)]</ref>:
 


:<math>R_G \propto  (PG)^{1-\nu}N^{2\nu-1}</math>


where <math>\nu</math> is the [[Flory exponent]].
:<math>R_{G{\mathrm{ideal}} \propto \sqrt{PG}</math>


==Specific dendrimers==
==Specific dendrimers==
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)