Editing Virial pressure

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
#REDIRECT[[Pressure#Virial pressure]]
The '''virial pressure'''  is commonly used to obtain the [[pressure]] from a general simulation. It is particularly well suited to [[molecular dynamics]], since forces are evaluated and readily available. For pair interactions, one has:
 
:<math> p  =  \frac{ k_B T  N}{V} - \frac{ 1 }{ d V } \overline{ \sum_{i<j} {\mathbf f}_{ij}  {\mathbf r}_{ij} }, </math>
 
where one can recognize an ideal term, and a second term due to the [[virial]]. The overline is an average, which would be a time average in molecular dynamics, or an ensemble  average in [[Monte Carlo]]; <math>d</math> is the dimension of the system (3 in the "real" world). <math> {\mathbf f}_{ij} </math> is the force '''on''' particle <math>i</math> exerted '''by''' particle <math>j</math>, and <math>{\mathbf r}_{ij}</math> is the vector going '''from''' <math>i</math> '''to''' <math>j</math>: <math>{\mathbf r}_{ij} = {\mathbf r}_j - {\mathbf r}_i</math>.
 
This relationship is readily obtained by writing the [[partition function]] in "reduced coordinates" <math>x^*=x/L</math>, etc, then considering a "blow-up" of the system by changing the value of <math>L</math>. This would apply to a simple cubic system, but the same ideas can also be applied to obtain expressions for the [[stress | stress tensor]] and the [[surface tension]], and are also used in [[constant-pressure Monte Carlo]].
 
If the interaction is central, the force is given by
:<math> {\mathbf f}_{ij} = - \frac{{\mathbf r}_{ij}}{ r_{ij}} f(r_{ij})  , </math>
where <math>f(r)</math> the force corresponding to the intermolecular potential <math>U(r)</math>:
 
:<math>-\partial u(r)/\partial r.</math>
 
E.g., for the [[Lennard-Jones model | Lennard-Jones potential]], <math>f(r)=24\epsilon(2(\sigma/r)^{12}- (\sigma/r)^6 )/r</math>. Hence, the expression reduces to
:<math> p  =  \frac{ k_B T  N}{V} + \frac{ 1 }{ d V } \overline{ \sum_{i<j} f(r_{ij})  r_{ij} }. </math>
 
 
[[category: classical mechanics]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)