Universality classes: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
(Added references.)
Line 12: Line 12:
|  ||  ||  || ||    ||  ||Directed percolation
|  ||  ||  || ||    ||  ||Directed percolation
|-  
|-  
|  ||  ||  || 0 || <math>1/8</math>  || <math>7/4</math>  ||Ising
|  ||  ||  || 0 || <math>1/8</math>  || <math>7/4</math>  || 2D Ising
|-
|  ||  ||  || 0 || <math>1/8</math>  || <math>7/4</math>  || 3D Ising
|-  
|-  
|  ||  ||  || ||    ||  ||Local linear interface
|  ||  ||  || ||    ||  ||Local linear interface
Line 59: Line 61:
</math>
</math>


In three dimensions, the [[critical exponents]] are not known exactly. However, Monte Carlo simulations and  Renormalization group analysis provide accurate estimates
In three dimensions, the critical exponents are not known exactly. However, [[Monte Carlo | Monte Carlo simulations]] and  [[Renormalisation group]] analysis provide accurate estimates:
 
:<math>
\nu=0.6298 (5)
</math><ref name="Hasenbusch">[http://dx.doi.org/10.1103/PhysRevB.59.11471 M. Hasenbusch, K. Pinn and S. Vinti "Critical exponents of the three-dimensional Ising universality class from finite-size scaling with standard and improved actions", Physical Review B '''59''' pp. 11471-11483 (1999)]</ref>
 
:<math>
\alpha=0.108(5)
</math> <ref name="Kolesik"> [http://dx.doi.org/10.1016/0378-4371(94)00302-A Miroslav Kolesik and Masuo Suzuki "Accurate estimates of 3D Ising critical exponents using the coherent-anomaly method", Physica A: Statistical and Theoretical Physics '''215''' pp. 138-151 (1995)]</ref>


<math>
:<math>
\nu=0.632
\beta= 0.3269(6)
</math>
</math> <ref name="Talapov">[http://dx.doi.org/10.1088/0305-4470/29/17/042 A. L. Talapov and H. W. J Blöte "The magnetization of the 3D Ising model", Journal of Physics A: Mathematical and General '''29''' pp. 5727-5733 (1996)]</ref>


<math>
:<math>
\beta=0.22166
\gamma=1.237(4)
</math>
</math><ref name="Kolesik"> </ref>


<math>
:<math>
\gamma=1.239
\delta=4.77(5)
</math>
</math><ref name="Kolesik"> </ref>


<math>
:<math>
\nu=0.03
\eta =0.0366(8)
</math>
</math><ref name="Hasenbusch"> </ref>


In four and higher dimensions, the critical exponents are lean-field with logarithmic corrections.
with a critical temperature of <math>K_c = J/k_BT_c = 0.2216544</math><ref name="Talapov"> </ref>. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.
==Local linear interface==
==Local linear interface==
==Mean-field==
==Mean-field==

Revision as of 12:11, 26 July 2011

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.
class
3-state Potts
Ashkin-Teller
Chiral
Directed percolation
0 2D Ising
0 3D Ising
Local linear interface
0 1 Mean-field
Molecular beam epitaxy
Random-field

3-state Potts

Ashkin-Teller

Chiral

Directed percolation

Ising

The Hamiltonian of the Ising model is


where and the summation runs over the lattice sites.

The order parameter is

In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the critical exponents are (In fact, the specific heat diverges logarithmically with the critical temperature)

In three dimensions, the critical exponents are not known exactly. However, Monte Carlo simulations and Renormalisation group analysis provide accurate estimates:

[1]
[2]
[3]
[2]
[2]
[1]

with a critical temperature of [3]. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.

Local linear interface

Mean-field

The critical exponents of are derived as follows [4]:

Heat capacity exponent:

(final result: )

Magnetic order parameter exponent:

(final result: )

Susceptibility exponent:

(final result: )

Molecular beam epitaxy

See also

Random-field

References