TIP4P/2005 model of water: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Surface tension: Added a recent reference)
m (Slight tidy)
Line 2: Line 2:
<ref>[http://dx.doi.org/10.1063/1.2121687 J. L. F. Abascal and C. Vega "A general purpose model for the condensed phases of water: TIP4P/2005", Journal of Chemical Physics, '''123''' 234505 (2005)]</ref>
<ref>[http://dx.doi.org/10.1063/1.2121687 J. L. F. Abascal and C. Vega "A general purpose model for the condensed phases of water: TIP4P/2005", Journal of Chemical Physics, '''123''' 234505 (2005)]</ref>
is a re-parameterisation of the original [[TIP4P]] potential for [[Computer simulation techniques | simulations]] of [[water]].
is a re-parameterisation of the original [[TIP4P]] potential for [[Computer simulation techniques | simulations]] of [[water]].
TIP4P/2005 is a rigid planar model, having a similar geometry to the [[BF |Bernal and  Fowler model]].
TIP4P/2005 is a rigid planar model, having a similar geometry to that of the [[BF |Bernal and  Fowler model]].
==Parameters==
==Parameters==
[[Image:Four_site_water_model.png‎|center|400px]]
The TIP4P/2005 model consists of a [[Lennard-Jones model | Lennard-Jones site]] for the [[oxygen]] atom, and three charge sites.
::[[Image:Four_site_water_model.png‎|400px]]
 




Line 19: Line 21:


==Phase diagram==
==Phase diagram==
[[Image:TIP4P_2005_phase_diagram.png|right|400px]]
The [[Phase diagrams | phase diagram]] of the TIP4P/2005 model in the [[Phase diagrams: Pressure-temperature plane |pressure-temperature plane]] (adapted from Fig. 9a of <ref name="multiple2">[http://dx.doi.org/10.1063/1.3156856  J. L. Aragones and C. Vega "Plastic crystal phases of simple water models", Journal of Chemical Physics '''130''' 244504 (2009)]</ref>)
The [[Phase diagrams | phase diagram]] of the TIP4P/2005 model is given in a publication by Abascal, Sanz and Vega <ref>[http://dx.doi.org/10.1039/b812832d Jose L. F. Abascal, Eduardo Sanz and Carlos Vega "Triple points and coexistence properties of the dense phases of water calculated using computer simulation",  Physical Chemistry Chemical Physics '''11''' pp.  556-562 (2009)]</ref>
is given in a publication by Abascal, Sanz and Vega <ref>[http://dx.doi.org/10.1039/b812832d Jose L. F. Abascal, Eduardo Sanz and Carlos Vega "Triple points and coexistence properties of the dense phases of water calculated using computer simulation",  Physical Chemistry Chemical Physics '''11''' pp.  556-562 (2009)]</ref>
:[[Image:TIP4P_2005_phase_diagram.png|400px]]
and for negative [[pressure]]s in the publication
and for negative [[pressure]]s in the publication
<ref>[http://dx.doi.org/10.1063/1.3182727 M. M. Conde, C. Vega, G. A. Tribello, and B. Slater "The phase diagram of water at negative pressures: Virtual ices", Journal of Chemical Physics '''131''' 034510 (2009)]</ref>
<ref>[http://dx.doi.org/10.1063/1.3182727 M. M. Conde, C. Vega, G. A. Tribello, and B. Slater "The phase diagram of water at negative pressures: Virtual ices", Journal of Chemical Physics '''131''' 034510 (2009)]</ref>
Line 26: Line 29:
<ref>[http://dx.doi.org/10.1063/1.2215612 C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics  '''125''' 034503 (2006)]</ref>
<ref>[http://dx.doi.org/10.1063/1.2215612 C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics  '''125''' 034503 (2006)]</ref>
====Plastic crystal phases====
====Plastic crystal phases====
Recent simulations have suggested the possibility of a [[Plastic crystals | plastic crystal]] phase or phases for water <ref>[http://dx.doi.org/10.1039/b812834k J. L. Aragones, M. M. Conde, E. G. Noya and C. Vega "The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase", Physical Chemistry Chemical Physics '''11''' pp. 543- (2009)]</ref>
Recent simulations have suggested the possibility of a [[Plastic crystals | plastic crystal]] phase or phases for water <ref name="multiple2"> </ref><ref>[http://dx.doi.org/10.1039/b812834k J. L. Aragones, M. M. Conde, E. G. Noya and C. Vega "The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase", Physical Chemistry Chemical Physics '''11''' pp. 543- (2009)]</ref>
<ref>[http://dx.doi.org/10.1063/1.3156856  J. L. Aragones and C. Vega "Plastic crystal phases of simple water models", Journal of Chemical Physics '''130''' 244504 (2009)]</ref>
 
==Surface tension==
==Surface tension==
The [[surface tension]] has been studied for the TIP4P/2005 model
The [[surface tension]] has been studied for the TIP4P/2005 model

Revision as of 14:30, 7 July 2010

The TIP4P/2005 model [1] is a re-parameterisation of the original TIP4P potential for simulations of water. TIP4P/2005 is a rigid planar model, having a similar geometry to that of the Bernal and Fowler model.

Parameters

The TIP4P/2005 model consists of a Lennard-Jones site for the oxygen atom, and three charge sites.


(Å) HOH , deg (Å) (K) q(O) (e) q(H) (e) q(M) (e) (Å)
0.9572 104.52 3.1589 93.2 0 0.5564 -2q(H) 0.1546


Phase diagram

The phase diagram of the TIP4P/2005 model in the pressure-temperature plane (adapted from Fig. 9a of [2]) is given in a publication by Abascal, Sanz and Vega [3]

and for negative pressures in the publication [4]

Liquid-vapour equilibria

[5]

Plastic crystal phases

Recent simulations have suggested the possibility of a plastic crystal phase or phases for water [2][6]

Surface tension

The surface tension has been studied for the TIP4P/2005 model [7] [8] [9]

Self-diffusion coefficient

The TIP4P/2005 potential has a self-diffusion coefficient, in bulk water at 298 K, of 0.21 Å2 ps−1 in a classical simulation of 216 water molecules (experimental value: 0.23 Å2 ps−1) [10].

Shear viscosity

The shear viscosity for the TIP4P/2005 model is 0.855 mPa.s at 298 K and 1 bar [11] (experimental value 0.896 mPa.s [12]).

References

  1. J. L. F. Abascal and C. Vega "A general purpose model for the condensed phases of water: TIP4P/2005", Journal of Chemical Physics, 123 234505 (2005)
  2. 2.0 2.1 J. L. Aragones and C. Vega "Plastic crystal phases of simple water models", Journal of Chemical Physics 130 244504 (2009)
  3. Jose L. F. Abascal, Eduardo Sanz and Carlos Vega "Triple points and coexistence properties of the dense phases of water calculated using computer simulation", Physical Chemistry Chemical Physics 11 pp. 556-562 (2009)
  4. M. M. Conde, C. Vega, G. A. Tribello, and B. Slater "The phase diagram of water at negative pressures: Virtual ices", Journal of Chemical Physics 131 034510 (2009)
  5. C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics 125 034503 (2006)
  6. J. L. Aragones, M. M. Conde, E. G. Noya and C. Vega "The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase", Physical Chemistry Chemical Physics 11 pp. 543- (2009)
  7. C. Vega and E. de Miguel "Surface tension of the most popular models of water by using the test-area simulation method", Journal of Chemical Physics 126 154707 (2007)
  8. José Alejandre and Gustavo A. Chapela "The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions", Journal of Chemical Physics 132 014701 (2010)
  9. J. M. Míguez, D. González-Salgado, J. L. Legido, and M. M. Piñeiro "Calculation of interfacial properties using molecular simulation with the reaction field method: Results for different water models", Journal of Chemical Physics 132 184102 (2010)
  10. Thomas E. Markland, Scott Habershon, and David E. Manolopoulos "Quantum diffusion of hydrogen and muonium atoms in liquid water and hexagonal ice", Journal of Chemical Physics 128 194506 (2008)
  11. Miguel Angel González and José L. F. Abascal "The shear viscosity of rigid water models", Journal of Chemical Physics 132 096101 (2010)
  12. Kenneth R. Harris and Lawrence A. Woolf "Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures", Journal of Chemical & Engineering Data 49 pp. 1064-1069 (2004)

Related reading

External links and resources

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.