TIP4P/2005 model of water: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Added a section for shear viscosity)
Line 37: Line 37:
The TIP4P/2005 potential has a [[Diffusion |self-diffusion]] coefficient, in bulk water at 298 K, of 0.21  &Aring;<sup>2</sup> ps<sup>−1</sup> in a classical simulation of 216 water molecules (experimental value: 0.23  &Aring;<sup>2</sup> ps<sup>−1</sup>)
The TIP4P/2005 potential has a [[Diffusion |self-diffusion]] coefficient, in bulk water at 298 K, of 0.21  &Aring;<sup>2</sup> ps<sup>−1</sup> in a classical simulation of 216 water molecules (experimental value: 0.23  &Aring;<sup>2</sup> ps<sup>−1</sup>)
<ref>[http://dx.doi.org/10.1063/1.2925792 Thomas E. Markland, Scott Habershon, and David E. Manolopoulos "Quantum diffusion of hydrogen and muonium atoms in liquid water and hexagonal ice", Journal of Chemical Physics '''128''' 194506 (2008)]</ref>.
<ref>[http://dx.doi.org/10.1063/1.2925792 Thomas E. Markland, Scott Habershon, and David E. Manolopoulos "Quantum diffusion of hydrogen and muonium atoms in liquid water and hexagonal ice", Journal of Chemical Physics '''128''' 194506 (2008)]</ref>.
 
==Shear viscosity==
The [[shear viscosity]] for the TIP4P/2005 model is 0.855 mPa.s at 298 K and 1 bar <ref>[http://dx.doi.org/10.1063/1.3330544 Miguel Angel González and José L. F. Abascal "The shear viscosity of rigid water models", Journal of Chemical Physics '''132''' 096101 (2010)]</ref> (experimental value 0.896  mPa.s <ref>[http://dx.doi.org/10.1021/je049918m Kenneth R. Harris and Lawrence A. Woolf "Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures", Journal of Chemical & Engineering Data '''49''' pp. 1064-1069 (2004)]</ref>).
==References==
==References==
<references/>
<references/>

Revision as of 15:14, 5 March 2010

The TIP4P/2005 model [1] is a re-parameterisation of the original TIP4P potential for simulations of water. TIP4P/2005 is a rigid planar model, having a similar geometry to the Bernal and Fowler model.

Parameters


(Å) HOH , deg (Å) (K) q(O) (e) q(H) (e) q(M) (e) (Å)
0.9572 104.52 3.1589 93.2 0 0.5564 -2q(H) 0.1546


Phase diagram

The phase diagram of the TIP4P/2005 model is given in a publication by Abascal, Sanz and Vega [2] and for negative pressures in the publication [3]

Liquid-vapour equilibria

[4]

Plastic crystal phases

Recent simulations have suggested the possibility of a plastic crystal phase or phases for water [5] [6]

Surface tension

The surface tension has been studied for the TIP4P/2005 model [7] [8]

Self-diffusion coefficient

The TIP4P/2005 potential has a self-diffusion coefficient, in bulk water at 298 K, of 0.21 Å2 ps−1 in a classical simulation of 216 water molecules (experimental value: 0.23 Å2 ps−1) [9].

Shear viscosity

The shear viscosity for the TIP4P/2005 model is 0.855 mPa.s at 298 K and 1 bar [10] (experimental value 0.896 mPa.s [11]).

References

  1. J. L. F. Abascal and C. Vega "A general purpose model for the condensed phases of water: TIP4P/2005", Journal of Chemical Physics, 123 234505 (2005)
  2. Jose L. F. Abascal, Eduardo Sanz and Carlos Vega "Triple points and coexistence properties of the dense phases of water calculated using computer simulation", Physical Chemistry Chemical Physics 11 pp. 556-562 (2009)
  3. M. M. Conde, C. Vega, G. A. Tribello, and B. Slater "The phase diagram of water at negative pressures: Virtual ices", Journal of Chemical Physics 131 034510 (2009)
  4. C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics 125 034503 (2006)
  5. J. L. Aragones, M. M. Conde, E. G. Noya and C. Vega "The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase", Physical Chemistry Chemical Physics 11 pp. 543- (2009)
  6. J. L. Aragones and C. Vega "Plastic crystal phases of simple water models", Journal of Chemical Physics 130 244504 (2009)
  7. C. Vega and E. de Miguel "Surface tension of the most popular models of water by using the test-area simulation method", Journal of Chemical Physics 126 154707 (2007)
  8. José Alejandre and Gustavo A. Chapela "The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions", Journal of Chemical Physics 132 014701 (2010)
  9. Thomas E. Markland, Scott Habershon, and David E. Manolopoulos "Quantum diffusion of hydrogen and muonium atoms in liquid water and hexagonal ice", Journal of Chemical Physics 128 194506 (2008)
  10. Miguel Angel González and José L. F. Abascal "The shear viscosity of rigid water models", Journal of Chemical Physics 132 096101 (2010)
  11. Kenneth R. Harris and Lawrence A. Woolf "Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures", Journal of Chemical & Engineering Data 49 pp. 1064-1069 (2004)

Related reading

External links and resources

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.