TIP4P/2005 model of water: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Phase diagram: Added a new reference.)
m (→‎Surface tension: Added a new publication.)
Line 32: Line 32:


==Surface tension==
==Surface tension==
The [[surface tension]] has been studied for the TIP4P/2005 model by Vega and Miguel.
The [[surface tension]] has been studied for the TIP4P/2005 model
*[http://dx.doi.org/10.1063/1.2715577 C. Vega and E. de Miguel "Surface tension of the most popular models of water by using the test-area simulation method", Journal of Chemical Physics '''126''' 154707 (2007)]
<ref>[http://dx.doi.org/10.1063/1.2715577 C. Vega and E. de Miguel "Surface tension of the most popular models of water by using the test-area simulation method", Journal of Chemical Physics '''126''' 154707 (2007)]</ref>
<ref>[http://dx.doi.org/10.1063/1.3279128 José Alejandre and Gustavo A. Chapela "The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions", Journal of Chemical Physics '''132''' 014701 (2010)]</ref>
 
==Self-diffusion coefficient==
==Self-diffusion coefficient==
The TIP4P/2005 potential has a [[Diffusion |self-diffusion]] coefficient, in bulk water at 298 K, of 0.21  &Aring;<sup>2</sup> ps<sup>−1</sup> in a classical simulation of 216 water molecules (experimental value: 0.23  &Aring;<sup>2</sup> ps<sup>−1</sup>).
The TIP4P/2005 potential has a [[Diffusion |self-diffusion]] coefficient, in bulk water at 298 K, of 0.21  &Aring;<sup>2</sup> ps<sup>−1</sup> in a classical simulation of 216 water molecules (experimental value: 0.23  &Aring;<sup>2</sup> ps<sup>−1</sup>).

Revision as of 11:39, 7 January 2010

The TIP4P/2005 model [1] is a re-parameterisation of the original TIP4P potential for simulations of water. TIP4P/2005 is a rigid planar model, having a similar geometry to the Bernal and Fowler model.

Parameters


(Å) HOH , deg (Å) (K) q(O) (e) q(H) (e) q(M) (e) (Å)
0.9572 104.52 3.1589 93.2 0 0.5564 -2q(H) 0.1546


Phase diagram

The phase diagram of the TIP4P/2005 model is given in a publication by Abascal, Sanz and Vega.

and for negative pressures in the publication

Liquid-vapour equilibria

Plastic crystal phases

Recent simulations have suggested the possibility of a plastic crystal phase or phases for water.

Surface tension

The surface tension has been studied for the TIP4P/2005 model [2] [3]

Self-diffusion coefficient

The TIP4P/2005 potential has a self-diffusion coefficient, in bulk water at 298 K, of 0.21 Å2 ps−1 in a classical simulation of 216 water molecules (experimental value: 0.23 Å2 ps−1).

References

Related reading

External links and resources

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.