Editing TIP4P/2005 model of water

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 30: Line 30:
<ref>[http://dx.doi.org/10.1063/1.2215612 C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics  '''125''' 034503 (2006)]</ref>
<ref>[http://dx.doi.org/10.1063/1.2215612 C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics  '''125''' 034503 (2006)]</ref>
====Plastic crystal phases====
====Plastic crystal phases====
Recent simulations have suggested the possibility of a [[Plastic crystals | plastic crystal]] phase or phases for water <ref name="multiple2"></ref><ref>[http://dx.doi.org/10.1039/b812834k J. L. Aragones, M. M. Conde, E. G. Noya and C. Vega "The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase", Physical Chemistry Chemical Physics '''11''' pp. 543- (2009)]</ref>
Recent simulations have suggested the possibility of a [[Plastic crystals | plastic crystal]] phase or phases for water <ref name="multiple2"> </ref><ref>[http://dx.doi.org/10.1039/b812834k J. L. Aragones, M. M. Conde, E. G. Noya and C. Vega "The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase", Physical Chemistry Chemical Physics '''11''' pp. 543- (2009)]</ref>
====Supercooled region====
====Supercooled region====
The [[Supercooling and nucleation | supercooled]] region has been studied by Abascal and Vega <ref>[http://dx.doi.org/10.1063/1.3585676 J. L. F. Abascal and C. Vega "Note: Equation of state and compressibility of supercooled water: Simulations and experiment", Journal of Chemical Physics '''134''' 186101 (2011)]</ref>, locating a [[Widom line]] <ref>[http://dx.doi.org/10.1063/1.3594545 K. T. Wikfeldt, C. Huang, A. Nilsson, and L. G. M. Pettersson "Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water", Journal of Chemical Physics '''134''' 214506 (2011)]</ref>, indicating a [[second critical point for water]] located at 1350 bar and 193 K.
The [[Supercooling and nucleation | supercooled]] region has been studied by Abascal and Vega <ref>[http://dx.doi.org/10.1063/1.3585676 J. L. F. Abascal and C. Vega "Note: Equation of state and compressibility of supercooled water: Simulations and experiment", Journal of Chemical Physics '''134''' 186101 (2011)]</ref>, locating a [[Widom line]] <ref>[http://dx.doi.org/10.1063/1.3594545 K. T. Wikfeldt, C. Huang, A. Nilsson, and L. G. M. Pettersson "Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water", Journal of Chemical Physics '''134''' 214506 (2011)]</ref>, indicating a [[second critical point for water]] located at 1350 bar and 193 K.
Line 53: Line 53:
==Virial coefficients==
==Virial coefficients==
The [[second virial coefficient]] has been calculated by Chialvo et al <ref>[http://dx.doi.org/10.1016/j.molliq.2006.08.018 Ariel A. Chialvo, Albert Bartók and András Baranyai "On the re-engineered TIP4P water models for the prediction of vapor–liquid equilibrium", Journal of Molecular Liquids '''129''' pp. 120-124 (2006)]</ref>.
The [[second virial coefficient]] has been calculated by Chialvo et al <ref>[http://dx.doi.org/10.1016/j.molliq.2006.08.018 Ariel A. Chialvo, Albert Bartók and András Baranyai "On the re-engineered TIP4P water models for the prediction of vapor–liquid equilibrium", Journal of Molecular Liquids '''129''' pp. 120-124 (2006)]</ref>.
==Thermal conductivity==
==Thermal conductivity==
[[Thermal conductivity]] <ref>[http://dx.doi.org/10.1063/1.4739855  Frank Römer, Anders Lervik, and Fernando Bresme "Nonequilibrium molecular dynamics simulations of the thermal conductivity of water: A systematic investigation of the SPC/E and TIP4P/2005 models", Journal of Chemical Physics '''137''' 074503 (2012)]</ref>.
[[Thermal conductivity]] <ref>[http://dx.doi.org/10.1063/1.4739855  Frank Römer, Anders Lervik, and Fernando Bresme "Nonequilibrium molecular dynamics simulations of the thermal conductivity of water: A systematic investigation of the SPC/E and TIP4P/2005 models", Journal of Chemical Physics '''137''' 074503 (2012)]</ref>.
==Melting point==
<math> T_m = 249.5 \pm 0.1</math> K <ref>[https://doi.org/10.1063/1.5008478 M. M. Conde, M. Rovere, and P. Gallo "High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique", Journal of Chemical Physics '''147''' 244506 (2017)]</ref>.
==References==
==References==
<references/>
<references/>
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)

Template used on this page: