Stockmayer potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a recent publication)
Line 31: Line 31:
'''Related reading'''
'''Related reading'''
*[http://dx.doi.org/10.1016/0378-3812(94)80018-9 M. E. van Leeuwen "Derivation of Stockmayer potential parameters for polar fluids", Fluid Phase Equilibria '''99''' pp. 1-18 (1994)]  
*[http://dx.doi.org/10.1016/0378-3812(94)80018-9 M. E. van Leeuwen "Derivation of Stockmayer potential parameters for polar fluids", Fluid Phase Equilibria '''99''' pp. 1-18 (1994)]  
*[http://dx.doi.org/10.1016/j.fluid.2007.02.009 Osvaldo H. Scalise "On the phase equilibrium Stockmayer fluids", Fluid Phase Equilibria '''253''' pp. 171–175 (2007)]
*[http://dx.doi.org/10.1103/PhysRevE.75.011506  Reinhard Hentschke, Jörg Bartke, and Florian Pesth "Equilibrium polymerization and gas-liquid critical behavior in the Stockmayer fluid", Physical Review E '''75''' 011506 (2007)]
*[http://dx.doi.org/10.1103/PhysRevE.75.011506  Reinhard Hentschke, Jörg Bartke, and Florian Pesth "Equilibrium polymerization and gas-liquid critical behavior in the Stockmayer fluid", Physical Review E '''75''' 011506 (2007)]
{{numeric}}
{{numeric}}
[[category: models]]
[[category: models]]

Revision as of 01:34, 16 February 2013

The Stockmayer potential consists of the Lennard-Jones model with an embedded point dipole. Thus the Stockmayer potential becomes (Eq. 1 [1]):

where:

  • is the intermolecular pair potential between two particles at a distance
  • is the diameter (length), i.e. the value of at
  • represents the well depth (energy)
  • is the permittivity of the vacuum
  • is the dipole moment
  • and are the angles associated with the inclination of the two dipole axes with respect to the intermolecular axis.
  • is the azimuth angle between the two dipole moments

If one defines a reduced dipole moment, , such that:

one can rewrite the expression as

For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential.

Critical properties

In the range [2]:

Bridge function

A bridge function for use in integral equations has been calculated by Puibasset and Belloni [3].

References

Related reading

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.