Pressure equation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
m (Added internal link)
Line 8: Line 8:
:<math>p^*=\frac{\beta p}{\rho}= \frac{pV}{Nk_BT} = 1 - \beta \frac{2}{3} \pi  \rho \int_0^{\infty} \left( \frac{{\rm d}\Phi(r)} {{\rm d}r}~r \right)~{\rm g}(r)r^2~{\rm d}r</math>
:<math>p^*=\frac{\beta p}{\rho}= \frac{pV}{Nk_BT} = 1 - \beta \frac{2}{3} \pi  \rho \int_0^{\infty} \left( \frac{{\rm d}\Phi(r)} {{\rm d}r}~r \right)~{\rm g}(r)r^2~{\rm d}r</math>


where <math>\beta = 1/k_BT</math>,
where <math>\beta := 1/k_BT</math>,
<math>\Phi(r)</math> is a ''central'' [[Intermolecular pair potential | potential]] and <math>{\rm g}(r)</math> is the [[pair distribution function]].
<math>\Phi(r)</math> is a ''central'' [[Intermolecular pair potential | potential]] and <math>{\rm g}(r)</math> is the [[pair distribution function]].
==See also==
*[[Virial pressure]]
==References==
==References==
[[category: statistical mechanics]]
[[category: statistical mechanics]]

Revision as of 19:04, 27 February 2008

For particles acting through two-body central forces alone one may use the thermodynamic relation

Using this relation, along with the Helmholtz energy function and the canonical partition function, one arrives at the so-called pressure equation (also known as the virial equation):

where , is a central potential and is the pair distribution function.

See also

References