Periodic boundary conditions: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added link to code F.01)
(Started an introduction)
Line 1: Line 1:
A liquid, in the [[thermodynamic limit]], would occupy an infinite volume. It is common experience that one can perfectly well obtain the thermodynamic properties of a material from a more modest sample. However, even a droplet has more atoms or molecules than one can possibly hope to introduce into ones [[Computer simulation techniques | computer simulation]]. Thus to simulate a bulk sample of liquid it is common practice to use a 'trick' known as '''periodic boundary conditions'''. If one has a cube of atoms/molecules, the molecule leaving one side enters on the diametrically opposite side. This is analogous to the arcade video game Asteriods <ref>[http://www.atari.com/arcade/asteroids play the official on-line version from Atari]</ref>, where one can imagine the action takes place on the surface of a torus.
*[[Cubic periodic boundary conditions | Cubic]]
*[[Cubic periodic boundary conditions | Cubic]]
*[[Orthorhombic periodic boundary conditions | Orthorhombic]]
*[[Orthorhombic periodic boundary conditions | Orthorhombic]]
Line 6: Line 7:
*[[Slab periodic boundary conditions | Slab]]
*[[Slab periodic boundary conditions | Slab]]
*[[Hexagonal prism periodic boundary conditions | Hexagonal prism]]
*[[Hexagonal prism periodic boundary conditions | Hexagonal prism]]
==References==
<references/>
==External resources==
==External resources==
*[ftp://ftp.dl.ac.uk/ccp5/ALLEN_TILDESLEY/F.01  Periodic boundary conditions in various geometries] sample FORTRAN computer code from the book [http://www.oup.com/uk/catalogue/?ci=9780198556459 M. P. Allen and D. J. Tildesley "Computer Simulation of Liquids", Oxford University Press (1989)].
*[ftp://ftp.dl.ac.uk/ccp5/ALLEN_TILDESLEY/F.01  Periodic boundary conditions in various geometries] sample FORTRAN computer code from the book [http://www.oup.com/uk/catalogue/?ci=9780198556459 M. P. Allen and D. J. Tildesley "Computer Simulation of Liquids", Oxford University Press (1989)].
[[category: Computer simulation techniques]]
[[category: Computer simulation techniques]]

Revision as of 13:59, 11 February 2010

A liquid, in the thermodynamic limit, would occupy an infinite volume. It is common experience that one can perfectly well obtain the thermodynamic properties of a material from a more modest sample. However, even a droplet has more atoms or molecules than one can possibly hope to introduce into ones computer simulation. Thus to simulate a bulk sample of liquid it is common practice to use a 'trick' known as periodic boundary conditions. If one has a cube of atoms/molecules, the molecule leaving one side enters on the diametrically opposite side. This is analogous to the arcade video game Asteriods [1], where one can imagine the action takes place on the surface of a torus.

References

External resources