Percus Yevick

From SklogWiki
Revision as of 11:53, 14 March 2008 by Carl McBride (talk | contribs) (Added internal link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

If one defines a class of diagrams by the linear combination (Eq. 5.18 Ref.1) (See G. Stell in Ref. 2)

one has the exact integral equation

The Percus-Yevick integral equation sets D(r)=0. Percus-Yevick (PY) proposed in 1958 Ref. 3

The Percus-Yevick closure relation can be written as (Ref. 3 Eq. 61)

or

or (Eq. 10 in Ref. 4)

or (Eq. 2 of Ref. 5)

where is the intermolecular pair potential.

In terms of the bridge function


Note: the restriction arising from the logarithmic term Ref. 6. A critical look at the PY was undertaken by Zhou and Stell in Ref. 7.

See also[edit]

References[edit]

  1. J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)
  2. G. Stell "PERCUS-YEVICK EQUATION FOR RADIAL DISTRIBUTION FUNCTION OF A FLUID", Physica 29 pp. 517- (1963)
  3. Jerome K. Percus and George J. Yevick "Analysis of Classical Statistical Mechanics by Means of Collective Coordinates", Physical Review 110 pp. 1 - 13 (1958)
  4. G. A. Martynov and G. N. Sarkisov "Exact equations and the theory of liquids. V", Molecular Physics 49 pp. 1495-1504 (1983)
  5. Forrest J. Rogers and David A. Young "New, thermodynamically consistent, integral equation for simple fluids", Physical Review A 30 pp. 999 - 1007 (1984)
  6. Niharendu Choudhury and Swapan K. Ghosh "Integral equation theory of Lennard-Jones fluids: A modified Verlet bridge function approach", Journal of Chemical Physics, 116 pp. 8517-8522 (2002)
  7. Yaoqi Zhou and George Stell "The hard-sphere fluid: New exact results with applications", Journal of Statistical Physics 52 1389-1412 (1988)