Path integral formulation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Rotational degrees of freedom: Added a little content.)
(Further tidy.)
Line 1: Line 1:
{{Stub-general}}
The '''Path integral formulation''' is an elegant method by which [[quantum mechanics | quantum mechanical]] contributions can be incorporated
In the path integral formulation the canonical [[partition function]] (in one dimension) is written as (Ref. review #4 Eq. 1)
within a classical simulation using Feynman path integrals (Refs. 1-7)
==Principles==
In the path integral formulation the canonical [[partition function]] (in one dimension) is written as (Ref. 4 Eq. 1)
:<math>Q(\beta, V)= \int {\mathrm d} x_1 \int_{x_1}^{x_1} Dx(\tau)e^{-S[x(\tau)]}</math>  
:<math>Q(\beta, V)= \int {\mathrm d} x_1 \int_{x_1}^{x_1} Dx(\tau)e^{-S[x(\tau)]}</math>  
where <math>S[x(\tau)]</math> is the Euclidian action, given by (Ref. review #4 Eq. 2)
where <math>S[x(\tau)]</math> is the Euclidian action, given by (Ref. 4 Eq. 2)
:<math>S[x(\tau)] = \int_0^{\beta \hbar} H(x(\tau))</math>
:<math>S[x(\tau)] = \int_0^{\beta \hbar} H(x(\tau))</math>
where <math>x(\tau)</math> is the path in time <math>\tau</math> and <math>H</math> is the [[Hamiltonian]].
where <math>x(\tau)</math> is the path in time <math>\tau</math> and <math>H</math> is the [[Hamiltonian]].
This leads to (Ref. review #4 Eq. 3)
This leads to (Ref. 4 Eq. 3)
:<math>Q_P = \left( \frac{mP}{2 \pi \beta \hbar^2} \right)^{P/2} \int ... \int {\mathrm d}x_1... {\mathrm d}x_P e^{-\beta \Phi_P (x_1...x_P;\beta)}</math>
:<math>Q_P = \left( \frac{mP}{2 \pi \beta \hbar^2} \right)^{P/2} \int ... \int {\mathrm d}x_1... {\mathrm d}x_P e^{-\beta \Phi_P (x_1...x_P;\beta)}</math>
where the Euclidean time is discretised in units of  
where the Euclidean time is discretised in units of  
Line 11: Line 13:
:<math>x_t = x(t \beta \hbar/P)</math>
:<math>x_t = x(t \beta \hbar/P)</math>
:<math>x_{P+1}=x_1</math>
:<math>x_{P+1}=x_1</math>
and ((Ref. review #4 Eq. 4)
and ((Ref. 4 Eq. 4)
:<math>\Phi_P (x_1...x_P;\beta)= \frac{mP}{2\beta^2 \hbar^2} \sum_{t=1}^P (x_t - x_{t+1})^2 + \frac{1}{P}  \sum_{t=1}^P  V(x_t)</math>.
:<math>\Phi_P (x_1...x_P;\beta)= \frac{mP}{2\beta^2 \hbar^2} \sum_{t=1}^P (x_t - x_{t+1})^2 + \frac{1}{P}  \sum_{t=1}^P  V(x_t)</math>.


where <math>P</math> is the Trotter number. In the Trotter limit, where <math>P \rightarrow \infty</math> these equations become exact. In the case where <math>P=1</math> these equations revert to a classical simulation. It has long been recognised that there is an isomorphism between this discretised quantum mechanical description, and the classical [[statistical mechanics]] of polyatomic fluids, in particular flexible ring molecules (Ref. 1), due to the periodic boundary conditions in imaginary time.
where <math>P</math> is the Trotter number. In the Trotter limit, where <math>P \rightarrow \infty</math> these equations become exact. In the case where <math>P=1</math> these equations revert to a classical simulation. It has long been recognised that there is an isomorphism between this discretised quantum mechanical description, and the classical [[statistical mechanics]] of polyatomic fluids, in particular flexible ring molecules (Ref. 8), due to the periodic boundary conditions in imaginary time.
==Rotational degrees of freedom==
==Rotational degrees of freedom==
In the case of systems having (<math>d</math>) rotational [[degree of freedom | degrees of freedom]] the [[Hamiltonian]] can be written in the form (Ref. 1 Eq. 2.1):
In the case of systems having (<math>d</math>) rotational [[degree of freedom | degrees of freedom]] the [[Hamiltonian]] can be written in the form (Ref. 1 Eq. 2.1):
Line 43: Line 45:
#[http://dx.doi.org/10.1063/1.2357599 Bastiaan J. Braams and David E. Manolopoulos "On the short-time limit of ring polymer molecular dynamics",  Journal of Chemical Physics  '''125''' 124105 (2006)]
#[http://dx.doi.org/10.1063/1.2357599 Bastiaan J. Braams and David E. Manolopoulos "On the short-time limit of ring polymer molecular dynamics",  Journal of Chemical Physics  '''125''' 124105 (2006)]
#[http://dx.doi.org/10.1063/1.2953308 Thomas E. Markland and David E. Manolopoulos "An efficient ring polymer contraction scheme for imaginary time path integral simulations",  Journal of Chemical Physics '''129''' 024105 (2008)]
#[http://dx.doi.org/10.1063/1.2953308 Thomas E. Markland and David E. Manolopoulos "An efficient ring polymer contraction scheme for imaginary time path integral simulations",  Journal of Chemical Physics '''129''' 024105 (2008)]
==External links==
====Grand canonical Monte Carlo====
*[http://www.smac.lps.ens.fr/index.php/Programs_Chapter_3:_Density_matrices_and_path_integrals Density matrices and path integrals] computer code on SMAC-wiki.
A path integral version of the [[Widom test-particle method]] for [[grand canonical Monte Carlo]] simulations:
==General Reading==
#[http://dx.doi.org/10.1063/1.474874 Qinyu Wang, J. Karl Johnson and Jeremy Q. Broughton "Path integral grand canonical Monte Carlo", Journal of Chemical Physics '''107''' pp. 5108-5117 (1997)]
====Reviews====
==Applications==
#R. P. Feynman and A. R. Hibbs, Path-integrals and Quantum Mechanics (McGraw-Hill, New York, 1965) ISBN 0-07-020650-3
#R. P. Feynman, Statistical Mechanics (Benjamin, Reading, Mass., 1972)
#[http://dx.doi.org/10.1063/1.441588      David Chandler and Peter G. Wolynes "Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids", Journal of Chemical Physics '''74''' pp. 4078-4095 (1981)]
#[http://dx.doi.org/10.1146/annurev.pc.37.100186.002153  B. J. Berne and ­D. Thirumalai "On the Simulation of Quantum Systems: Path Integral Methods", Annual Review of Physical Chemistry '''37''' pp. 401-424 (1986)]
#[http://dx.doi.org/10.1103/RevModPhys.67.279 D. M. Ceperley "Path integrals in the theory of condensed helium", Reviews of Modern Physics '''67''' 279 - 355 (1995)]
#[http://dx.doi.org/10.1080/014423597230190 Charusita Chakravarty "Path integral simulations of atomic and molecular systems", International Reviews in Physical Chemistry '''16''' pp. 421-444 (1997)]
# M. J. Gillan "The path-integral simulation of quantum systems" in "Computer Modelling of Fluids Polymers and Solids" eds. C. R. A. Catlow, S. C. Parker and M. P. Allen,  NATO ASI Series C '''293''' pp. 155-188 (1990)
====Applications====
Phase transitions, quantum dynamics, centroids etc.
Phase transitions, quantum dynamics, centroids etc.
#[http://dx.doi.org/10.1080/00268978900100811 J. R. Melrose and K. Singer "An investigation of supercooled Lennard-Jones argon by quantum mechanical and classical Monte Carlo simulation", Molecular Physics '''66''' 1203-1214 (1989)]
#[http://dx.doi.org/10.1080/00268978900100811 J. R. Melrose and K. Singer "An investigation of supercooled Lennard-Jones argon by quantum mechanical and classical Monte Carlo simulation", Molecular Physics '''66''' 1203-1214 (1989)]
Line 61: Line 55:
#[http://dx.doi.org/10.1063/1.479666    Rafael Ramírez and Telesforo López-Ciudad  "The Schrödinger formulation of the Feynman path centroid density", Journal of Chemical Physics '''111''' pp. 3339-3348 (1999)]
#[http://dx.doi.org/10.1063/1.479666    Rafael Ramírez and Telesforo López-Ciudad  "The Schrödinger formulation of the Feynman path centroid density", Journal of Chemical Physics '''111''' pp. 3339-3348 (1999)]
#[http://dx.doi.org/10.1063/1.1316105 C. Chakravarty and R. M. Lynden-Bell "Landau free energy curves for melting of quantum solids", Journal of Chemical Physics '''113''' pp. 9239-9247 (2000)]
#[http://dx.doi.org/10.1063/1.1316105 C. Chakravarty and R. M. Lynden-Bell "Landau free energy curves for melting of quantum solids", Journal of Chemical Physics '''113''' pp. 9239-9247 (2000)]
==External links==
*[http://www.smac.lps.ens.fr/index.php/Programs_Chapter_3:_Density_matrices_and_path_integrals Density matrices and path integrals] computer code on SMAC-wiki.
==References==
==References==
#R. P. Feynman and A. R. Hibbs "Path-integrals and Quantum Mechanics", McGraw-Hill, New York (1965) ISBN 0-07-020650-3
#R. P. Feynman "Statistical Mechanics", Benjamin, Reading, Massachusetts, (1972) ISBN 0805325085
#[http://dx.doi.org/10.1063/1.441588      David Chandler and Peter G. Wolynes "Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids", Journal of Chemical Physics '''74''' pp. 4078-4095 (1981)]
#[http://dx.doi.org/10.1146/annurev.pc.37.100186.002153  B. J. Berne and ­D. Thirumalai "On the Simulation of Quantum Systems: Path Integral Methods", Annual Review of Physical Chemistry '''37''' pp. 401-424 (1986)]
#[http://dx.doi.org/10.1103/RevModPhys.67.279 D. M. Ceperley "Path integrals in the theory of condensed helium", Reviews of Modern Physics '''67''' 279 - 355 (1995)]
#[http://dx.doi.org/10.1080/014423597230190 Charusita Chakravarty "Path integral simulations of atomic and molecular systems", International Reviews in Physical Chemistry '''16''' pp. 421-444 (1997)]
# M. J. Gillan "The path-integral simulation of quantum systems" in "Computer Modelling of Fluids Polymers and Solids" eds. C. R. A. Catlow, S. C. Parker and M. P. Allen,  NATO ASI Series C '''293''' pp. 155-188 (1990) ISBN 978-0-7923-0549-1
#[http://dx.doi.org/10.1063/1.441588 David Chandler and Peter G. Wolynes "Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids", Journal of Chemical Physics '''74''' pp. 4078-4095 (1981)]
#[http://dx.doi.org/10.1063/1.441588 David Chandler and Peter G. Wolynes "Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids", Journal of Chemical Physics '''74''' pp. 4078-4095 (1981)]
[[Category: Monte Carlo]]
[[Category: Monte Carlo]]
[[category: Quantum mechanics]]
[[category: Quantum mechanics]]

Revision as of 16:21, 22 October 2008

The Path integral formulation is an elegant method by which quantum mechanical contributions can be incorporated within a classical simulation using Feynman path integrals (Refs. 1-7)

Principles

In the path integral formulation the canonical partition function (in one dimension) is written as (Ref. 4 Eq. 1)

where is the Euclidian action, given by (Ref. 4 Eq. 2)

where is the path in time and is the Hamiltonian. This leads to (Ref. 4 Eq. 3)

where the Euclidean time is discretised in units of

and ((Ref. 4 Eq. 4)

.

where is the Trotter number. In the Trotter limit, where these equations become exact. In the case where these equations revert to a classical simulation. It has long been recognised that there is an isomorphism between this discretised quantum mechanical description, and the classical statistical mechanics of polyatomic fluids, in particular flexible ring molecules (Ref. 8), due to the periodic boundary conditions in imaginary time.

Rotational degrees of freedom

In the case of systems having () rotational degrees of freedom the Hamiltonian can be written in the form (Ref. 1 Eq. 2.1):

where the rotational part of the kinetic energy operator is given by (Ref. 1 Eq. 2.2)

where are the components of the angular momentum operator, and are the moments of inertia.

  1. Dominik Marx and Martin H Müser "Path integral simulations of rotors: theory and applications", Journal of Physics: Condensed Matter 11 pp. R117-R155 (1999)

Techniques

Path integral Monte Carlo

Path integral Monte Carlo (PIMC)

  1. J. A. Barker "A quantum-statistical Monte Carlo method; path integrals with boundary conditions", Journal of Chemical Physics 70 pp. 2914- (1979)

Path integral molecular dynamics

Path integral molecular dynamics (PIMC)

  1. M. Parrinello and A. Rahman "Study of an F center in molten KCl", Journal of Chemical Physics 80 pp. 860- (1984)

Centroid molecular dynamics

Centroid molecular dynamics (CMD)

  1. Jianshu Cao and Gregory A. Voth "The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties", Journal of Chemical Physics 100 pp. 5106- (1994)
  2. Seogjoo Jang and Gregory A. Voth "A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables", Journal of Chemical Physics 111 pp. 2371- (1999)

Ring polymer molecular dynamics

Ring polymer molecular dynamics (RPMD)

  1. Ian R. Craig and David E. Manolopoulos "Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics", Journal of Chemical Physics 121 pp. 3368- (2004)
  2. Bastiaan J. Braams and David E. Manolopoulos "On the short-time limit of ring polymer molecular dynamics", Journal of Chemical Physics 125 124105 (2006)
  3. Thomas E. Markland and David E. Manolopoulos "An efficient ring polymer contraction scheme for imaginary time path integral simulations", Journal of Chemical Physics 129 024105 (2008)

Grand canonical Monte Carlo

A path integral version of the Widom test-particle method for grand canonical Monte Carlo simulations:

  1. Qinyu Wang, J. Karl Johnson and Jeremy Q. Broughton "Path integral grand canonical Monte Carlo", Journal of Chemical Physics 107 pp. 5108-5117 (1997)

Applications

Phase transitions, quantum dynamics, centroids etc.

  1. J. R. Melrose and K. Singer "An investigation of supercooled Lennard-Jones argon by quantum mechanical and classical Monte Carlo simulation", Molecular Physics 66 1203-1214 (1989)
  2. Jianshu Cao and Gregory A. Voth "The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties", Journal of Chemical Physics 100 pp. 5093-5105 (1994)
  3. Jianshu Cao and Gregory A. Voth "Semiclassical approximations to quantum dynamical time correlation functions", Journal of Chemical Physics 104 pp. 273-285 (1996)
  4. Rafael Ramírez and Telesforo López-Ciudad "The Schrödinger formulation of the Feynman path centroid density", Journal of Chemical Physics 111 pp. 3339-3348 (1999)
  5. C. Chakravarty and R. M. Lynden-Bell "Landau free energy curves for melting of quantum solids", Journal of Chemical Physics 113 pp. 9239-9247 (2000)

External links

References

  1. R. P. Feynman and A. R. Hibbs "Path-integrals and Quantum Mechanics", McGraw-Hill, New York (1965) ISBN 0-07-020650-3
  2. R. P. Feynman "Statistical Mechanics", Benjamin, Reading, Massachusetts, (1972) ISBN 0805325085
  3. David Chandler and Peter G. Wolynes "Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids", Journal of Chemical Physics 74 pp. 4078-4095 (1981)
  4. B. J. Berne and ­D. Thirumalai "On the Simulation of Quantum Systems: Path Integral Methods", Annual Review of Physical Chemistry 37 pp. 401-424 (1986)
  5. D. M. Ceperley "Path integrals in the theory of condensed helium", Reviews of Modern Physics 67 279 - 355 (1995)
  6. Charusita Chakravarty "Path integral simulations of atomic and molecular systems", International Reviews in Physical Chemistry 16 pp. 421-444 (1997)
  7. M. J. Gillan "The path-integral simulation of quantum systems" in "Computer Modelling of Fluids Polymers and Solids" eds. C. R. A. Catlow, S. C. Parker and M. P. Allen, NATO ASI Series C 293 pp. 155-188 (1990) ISBN 978-0-7923-0549-1
  8. David Chandler and Peter G. Wolynes "Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids", Journal of Chemical Physics 74 pp. 4078-4095 (1981)