Difference between revisions of "Navier-Stokes equations"

From SklogWiki
Jump to: navigation, search
m (New section)
(Other form for the mom. eq.)
 
Line 23: Line 23:
 
where <math>\mathbf{f} </math> is a volumetric force (e.g. <math>\rho g</math> for gravity), and <math>\mathbb{T} </math> is the stress tensor.
 
where <math>\mathbf{f} </math> is a volumetric force (e.g. <math>\rho g</math> for gravity), and <math>\mathbb{T} </math> is the stress tensor.
  
 +
Another form of the equation, more similar in form to the continuity equation, stresses the fact that the '''momentum density''' is conserved. For each of the three Cartesian coordinates <math>\alpha=1,2,3</math>:
 +
 +
:<math>  \frac{\partial \rho v_\alpha}{\partial t}  +
 +
    \nabla \cdot {\rho v_\alpha \mathbf{v}} =
 +
  -\frac{\partial p}{\partial x_\alpha} +
 +
\sum_\beta \frac{\partial }{\partial x_\beta}  \mathbb{T}_{\beta\alpha} + f_\alpha. </math>
 +
 +
In vector form:
 +
 +
:<math>  \frac{\partial \rho v_\alpha}{\partial t}  +
 +
    \nabla \cdot {\rho \mathbf{v} \mathbf{v}} =
 +
  -\nabla p + \nabla\cdot\mathbb{T} + \mathbf{f}. </math>
 +
 +
The term <math> \mathbf{v} \mathbf{v} </math> is a dyad (direct tensor product).
  
 
==Stress==
 
==Stress==

Latest revision as of 17:32, 17 May 2010

Continuity[edit]

    \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0

or, using the substantive derivative:

 \frac{D\rho}{Dt} + \rho (\nabla \cdot \mathbf{v}) = 0.

For an incompressible fluid, \rho is constant, hence the velocity field must be divergence-free:

  \nabla \cdot \mathbf{v} =0.

Momentum[edit]

(Also known as the Navier-Stokes equation.)

  \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \nabla \cdot\mathbb{T} + \mathbf{f},

or, using the substantive derivative:

 \rho \left(\frac{D \mathbf{v}}{D t}  \right) = -\nabla p + \nabla \cdot\mathbb{T} + \mathbf{f},

where \mathbf{f} is a volumetric force (e.g. \rho g for gravity), and \mathbb{T} is the stress tensor.

Another form of the equation, more similar in form to the continuity equation, stresses the fact that the momentum density is conserved. For each of the three Cartesian coordinates \alpha=1,2,3:

  \frac{\partial \rho v_\alpha}{\partial t}  +
    \nabla \cdot {\rho v_\alpha \mathbf{v}} =
   -\frac{\partial p}{\partial x_\alpha} +
 \sum_\beta \frac{\partial }{\partial x_\beta}  \mathbb{T}_{\beta\alpha} + f_\alpha.

In vector form:

  \frac{\partial \rho v_\alpha}{\partial t}  +
    \nabla \cdot {\rho \mathbf{v} \mathbf{v}} =
   -\nabla p + \nabla\cdot\mathbb{T} + \mathbf{f}.

The term  \mathbf{v} \mathbf{v} is a dyad (direct tensor product).

Stress[edit]

The vector quantity  \nabla \cdot\mathbb{T} is the shear stress. For a Newtonian incompressible fluid,

 \nabla \mathbb{T} = \mu \nabla^2 \mathbf{v},

with \mu being the (dynamic) viscosity.

For an inviscid fluid, the momentum equation becomes Euler's equation for ideal fluids:

 \rho \left(\frac{D \mathbf{v}}{D t}  \right) = -\nabla p + \mathbf{f} .

References[edit]