Difference between revisions of "Michael E. Fisher"

From SklogWiki
Jump to: navigation, search
(started article)
 
(expanded article)
Line 1: Line 1:
'''Michael E. Fisher''' (1931-) is a Distinguished University Professor
+
'''Michael Ellis Fisher''' (1931-) is a Distinguished University Professor
and Regents Professor in the Institute for Physical Science and Technology and Department of Physics at the University of Maryland.
+
and Regents Professor in the Institute for Physical Science and Technology and Department of Physics at the University of Maryland. He is known for his contributinos to statistical physics, including the theory of [[phase transitions]] and critical phenomena.
  
 
Fisher was born on Sept. 3, 1931 in Trinidad.  He earned a B.Sc. at King's College, University of London and completed his Ph.D. in Physics there in 1957.
 
Fisher was born on Sept. 3, 1931 in Trinidad.  He earned a B.Sc. at King's College, University of London and completed his Ph.D. in Physics there in 1957.
Line 7: Line 7:
  
 
In 1987, Fisher moved to the University of Maryland.<ref>http://terpconnect.umd.edu/~xpectnil/FisherSummaryCV.html Retrieved 2009-02-11.</ref>
 
In 1987, Fisher moved to the University of Maryland.<ref>http://terpconnect.umd.edu/~xpectnil/FisherSummaryCV.html Retrieved 2009-02-11.</ref>
 +
==Honors==
 +
Fisher is a recipient of the Wolf Prize 1980 (together with [[Kenneth G. Wilson]] and Leo Kadanoff), the ACS Irving Langmuir Prize 1971 in Chemical Physics, the IUPAP Boltzmann Medal 1983, the APS Lars Onsager Prize 1995, among other honors.
 
==Selected publications==
 
==Selected publications==
 
#The story of Coulombic criticality, J. Stat. Phys. '''75''',1-36 (1994).
 
#The story of Coulombic criticality, J. Stat. Phys. '''75''',1-36 (1994).
Line 35: Line 37:
 
#Kinesin crouches to sprint but resists pushing (M.E.F. and Y.C. Kim) Proc. Natl. Acad. Sci. USA '''102''', 16209-16214 (2005).
 
#Kinesin crouches to sprint but resists pushing (M.E.F. and Y.C. Kim) Proc. Natl. Acad. Sci. USA '''102''', 16209-16214 (2005).
 
#Universality of ionic criticality: Size- and charge-asymmetric electrolytes (Y.C. Kim, M.E.F. and A.Z. Panagiotopoulos) Phys. Rev. '''95''', 195703:1-4 (2005).
 
#Universality of ionic criticality: Size- and charge-asymmetric electrolytes (Y.C. Kim, M.E.F. and A.Z. Panagiotopoulos) Phys. Rev. '''95''', 195703:1-4 (2005).
 +
==External links==
 +
*[http://www.glue.umd.edu/~xpectnil/ Homepage at University of Maryland]
 +
*[http://www.wolffund.org.il/full.asp?id=105 Wolf prize citation]
 +
*[http://www.sinica.edu.tw/~statphys/links/IUPAP_C3/Boltz_Award/BA1983.html Boltzmann medal citation]
 +
*[http://www.aps.org/programs/honors/prizes/prizerecipient.cfm?name=Michael%20E%2E%20Fisher&year=1995 Lars Onsager prize citation]
 +
 
==References==
 
==References==
 
<references/>
 
<references/>

Revision as of 15:29, 12 February 2009

Michael Ellis Fisher (1931-) is a Distinguished University Professor and Regents Professor in the Institute for Physical Science and Technology and Department of Physics at the University of Maryland. He is known for his contributinos to statistical physics, including the theory of phase transitions and critical phenomena.

Fisher was born on Sept. 3, 1931 in Trinidad. He earned a B.Sc. at King's College, University of London and completed his Ph.D. in Physics there in 1957.

He taught at King's College, reaching the rank of Professor from 1958-1966. He then emigrated to the United States to become a Professor of Chemistry and Mathematics at Cornell University. At Cornell, he was active in University governance, including serving as the Secretary of the University Senate and as Chair of the Chemistry Department.

In 1987, Fisher moved to the University of Maryland.[1]

Honors

Fisher is a recipient of the Wolf Prize 1980 (together with Kenneth G. Wilson and Leo Kadanoff), the ACS Irving Langmuir Prize 1971 in Chemical Physics, the IUPAP Boltzmann Medal 1983, the APS Lars Onsager Prize 1995, among other honors.

Selected publications

  1. The story of Coulombic criticality, J. Stat. Phys. 75,1-36 (1994).
  2. On the absence of intermediate phases in the two-dimensional Coulomb gas (M.E.F., X.-J. Li and Y. Levin) J. Stat. Phys. 79, 1-11; 81 [E] 865 (1995).
  3. The renormalized coupling constants and related amplitude ratios for Ising systems (S.-Y. Zinn, S.-N. Lai, and M.E.F.) Phys. Rev. E 54, 1176-1182 (1996).
  4. Prewetting transitions in a near-critical metallic vapor, V.F. Kozhevnikov, D.I. Arnold, S.P. Naurzakov, and M.E.F., Phys. Rev. Lett. 78, 1735-1738 (1997).
  5. Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70, 653-681 (1998).
  6. Fluctuations in electrolytes: the Lebowitz and other correlation lengths (S. Bekiranov and M.E.F.) Phys. Rev. Lett. 81, 5836-39 (1998).
  7. The force exerted by a molecular motor, M.E.F. and A.B. Kolomeisky, Proc. Nat'l Acad. Sci. USA, 96, 6597-6602 (1999).
  8. The Yang-Yang anomaly in fluid criticality: Experiment and scaling theory (M.E.F. and G. Orkoulas) Phys. Rev. Lett. 85, 696-699 (2000).
  9. Extended kinetic models with waiting-time distributions: exact results (A.B. Kolomeisky and M.E.F.) J. Chem. Phys. 113, 10 867-877 (2000)
  10. Force-velocity relation for growing microtubules (A.B. Kolomeisky and M.E.F.) Biophys. J. 80, 149-154 (2001).
  11. The critical locus of a simple fluid with added salt (Y.C. Kim and M.E.F.) J. Phys. Chem. B 105, 11785-95 (2001).
  12. Universality class of criticality in the restricted primitive model electrolyte (E. Luijten, M.E.F. and A. Z. Panagiotopoulos) Phys. Rev. Lett. 88, 185701:1-4 (2002).
  13. A simple kinetic model describes the processivity of myosin-V (A.B.Kolomeisky and M.E.F.) Biophys. J. 84, 1642-1650 (2003).
  14. Precise simulation of near-critical fluid coexistence (Y.C. Kim, M.E.F. and E. Luijten) [arXiv:cond-mat/0304032] Phys. Rev. Lett. 91, 065701:1-4 (2003).
  15. Ionic criticality: an exactly soluble model (J.-N. Aqua and M.E.F.) [arXiv:cond-mat/0311491] Phys. Rev. Lett. 92, 135702:1-4 (2004).
  16. Discretization dependence of criticality in model fluids: a hard core electrolyte (Y.C. Kim and M.E.F.) [arXiv:cond-mat/0402275] Phys. Rev. Lett. 92, 185703:1-4 (2004).
  17. Charge and density fluctuations lock horns: ionic criitcality with power-law forces (J.-N. Aqua and M.E.F.) J. Phys. A 37, L241-L248 (2004).
  18. Scaling for interfacial tensions near critical endpoints (S.-Y. Zinn and M.E.F.) [arXiv: cond-mat/0410673] Phys. Rev. E 71, 011601:1-17 (2005).
  19. Interfacial tensions near critical endpoints: experimental checks of EdGF theory (S.-Y. Zinn and M.E.F.) Molec. Phys. 103, 2927-2942 (2005): issue in honor of B. Widom
  20. How multivalency controls ionic criticality (J.-N. Aqua, S. Banerjee and M.E.F.) [arXiv:cont-mat/0507077] Phys. Rev. Lett. 95, 135701:1-4 (2005).
  21. Criticality in charge asymmetric ionic fluids (J.-N. Aqua, S. Banerjee and M.E.F.) [arXiv:cond-mat/0410692] Phys. Rev. E 72,041501:1-25(2005).
  22. Convergence of fine-lattice discretization for near-critical fluids (S. Moghaddam, Y.C. Kim and M.E.F.) [arXiv:cond-mat/0502169] J. Phys. Chem. B 109, 6824-37(2005).
  23. Fluid coexistence close to criticality: Scaling algorithms for precise simulation ( Y.C. Kim and M.E.F.) [arXiv:cond--mat/0411736] Comp. Phys. Commun. 169, 295-300 (2005).
  24. Singular coexistence-curve diameters: Experiments and simulations (Y.C. Kim and M.E.F.) [arXiv:cond-mat/0507369] Chem. Phys. Lett. 414, 185-192 (2005).
  25. Vectorial loading of processive motor proteins: Implementing a landscape picture ( Y.C. Kim and M.E.F.) [arXiv: cond-mat/0506185] J. Phys.: Condens. Matt. 17, S3821-S3838 2005).
  26. Kinesin crouches to sprint but resists pushing (M.E.F. and Y.C. Kim) Proc. Natl. Acad. Sci. USA 102, 16209-16214 (2005).
  27. Universality of ionic criticality: Size- and charge-asymmetric electrolytes (Y.C. Kim, M.E.F. and A.Z. Panagiotopoulos) Phys. Rev. 95, 195703:1-4 (2005).

External links

References