Methane: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
m (→‎References: Added a recent publication)
 
(2 intermediate revisions by the same user not shown)
Line 29: Line 29:
*[http://dx.doi.org/10.1063/1.4905526  Steven L. Mielke, and Donald G. Truhlar "Improved methods for Feynman path integral calculations and their application to calculate converged vibrational–rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane", Journal of Chemical Physics '''142''' 044105 (2015)]
*[http://dx.doi.org/10.1063/1.4905526  Steven L. Mielke, and Donald G. Truhlar "Improved methods for Feynman path integral calculations and their application to calculate converged vibrational–rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane", Journal of Chemical Physics '''142''' 044105 (2015)]
*[http://dx.doi.org/10.1063/1.4919079  Joyjit Chattoraj, Tobias Risthaus, Oliver Rubner, Andreas Heuer and Stefan Grimme "A multi-scale approach to characterize pure CH4, CF4, and CH4/CF4 mixtures", Journal of Chemical Physics '''142''' 164508 (2015)]
*[http://dx.doi.org/10.1063/1.4919079  Joyjit Chattoraj, Tobias Risthaus, Oliver Rubner, Andreas Heuer and Stefan Grimme "A multi-scale approach to characterize pure CH4, CF4, and CH4/CF4 mixtures", Journal of Chemical Physics '''142''' 164508 (2015)]
*[http://dx.doi.org/10.1063/1.4962261  Alec Owens, Sergei N. Yurchenko, Andrey Yachmenev, Jonathan Tennyson and Walter Thiel "A highly accurate ab initio potential energy surface for methane", Journal of Chemical Physics '''145''' 104305 (2016)]
*[http://dx.doi.org/10.1063/1.4961973  A. V. Nikitin, M. Rey and Vl. G. Tyuterev "First fully ab initio potential energy surface of methane with a spectroscopic accuracy", Journal of Chemical Physics '''145''' 114309 (2016)]
*[https://doi.org/10.1016/j.molliq.2017.07.112 Chuntao Jiang, JieOuyang, Lihua Wang, Qingsheng Liu, and Wuming Li "Coarse graining of the fully atomic methane models to monatomic isotropic models using relative entropy minimization", Journal of Molecular Liquids '''242''' pp. 1138-1147 (2017)]




[[category: models]]
[[category: models]]
[[category: Contains Jmol]]
[[category: Contains Jmol]]

Latest revision as of 14:33, 14 September 2017


<jmol>

 <jmolApplet>
 <script>set spin X 10; spin on</script>
 <size>200</size>
 <color>lightgrey</color>
   <wikiPageContents>methane.pdb</wikiPageContents>
</jmolApplet>
</jmol>
Methane

Methane (CH4) is the first in the homologous series of alkanes.

Lennard-Jones parameters[edit]

Methane is sometimes simulated as a single Lennard-Jones site using a united-atom model. Some Lennard-Jones parameters for methane are listed in the following table:

Force-field (K) (nm) Reference
OPLS 147.9 0.373 [1]
TraPPE 148 0.373 [2]

Three-body model[edit]

A Hauschild and Prausnitz [3] like three-body potential has been developed by Abbaspour [4], building on the OPLS model.

Plastic crystal phase[edit]

The methane has a plastic crystal phase.

Transport properties[edit]

[5].

References[edit]

Related reading