Difference between revisions of "Mayer f-function"

From SklogWiki
Jump to: navigation, search
Line 1: Line 1:
Definition:
+
The '''Mayer ''f''-function''', or ''f-bond'' is defined as:
  
:<math>f_{ij}=f(r_{ij})= \exp\left(-\frac{u(r)}{k_BT}\right) -1 </math>  
+
:<math>f_{12}=f(r_{12})= \exp\left(-\frac{\Phi_{12}(r)}{k_BT}\right) -1 </math>  
  
 
where
 
where
* <math>k_B</math> is the [[Boltzmann constant]]
+
* <math>k_B</math> is the [[Boltzmann constant]].
* <math>T</math> is the temperature
+
* <math>T</math> is the [[temperature]].
* <math>u(r)</math> is the potential
+
* <math>\Phi_{12}(r)</math> is the [[intermolecular pair potential]].
  
 +
Diagrammatically the Mayer ''f''-function is written as
 +
 +
[[Image:Mayer_f_function.png]]
 
==References==
 
==References==
 +
#[http://dx.doi.org/10.1063/1.1723631 Joseph E. Mayer "Contribution to Statistical Mechanics", Journal of Chemical Physics '''10''' pp. 629-643 (1942)]
 
[[Category: Statistical mechanics]]
 
[[Category: Statistical mechanics]]
 
[[Category: Integral equations]]
 
[[Category: Integral equations]]

Revision as of 14:27, 25 June 2007

The Mayer f-function, or f-bond is defined as:

f_{12}=f(r_{12})= \exp\left(-\frac{\Phi_{12}(r)}{k_BT}\right) -1

where

Diagrammatically the Mayer f-function is written as

Mayer f function.png

References

  1. Joseph E. Mayer "Contribution to Statistical Mechanics", Journal of Chemical Physics 10 pp. 629-643 (1942)