Difference between revisions of "Maxwell speed distribution"

From SklogWiki
Jump to: navigation, search
m
Line 14: Line 14:
 
and the root-mean-square speed by
 
and the root-mean-square speed by
  
:<math>v_{\rm rms} = \sqrt \frac{3}{2} v_{\rm max}</math>
+
:<math>\sqrt{\overline{v^2}} = \sqrt \frac{3}{2} v_{\rm max}</math>
 
==Derivation==
 
==Derivation==
 
==References==
 
==References==

Revision as of 13:32, 2 August 2007

The probability that the speed of a molecule of mass m lies in the range v to v+dv is given by

P(v)dv = 4 \pi v^2 dv \left( \frac{m}{2 \pi k_B T} \right)^{3/2} \exp (-mv^2/2k_B T)

where T is the temperature and k_B is the Boltzmann constant. The maximum of this distribution is located at

v_{\rm max} = \sqrt{\frac{2k_BT}{m}}

The mean speed is given by

\overline{v} = \frac{2}{\sqrt \pi} v_{\rm max}

and the root-mean-square speed by

\sqrt{\overline{v^2}} = \sqrt \frac{3}{2} v_{\rm max}

Derivation

References

  1. J. C. Maxwell "", British Association for the Advancement of Science 29 Notices and Abstracts 9 (1859)
  2. J. C. Maxwell "", Philosophical Magazine 19 pp. 19 (1860)
  3. J. C. Maxwell "", Philosophical Magazine 20 pp. 21 (1860)
  4. J. Clerk Maxwell "On the Dynamical Theory of Gases", Philosophical Transactions of the Royal Society of London 157 pp. 49-88 (1867)
  5. J. S. Rowlinson "The Maxwell-Boltzmann distribution", Molecular Physics 103 pp. 2821 - 2828 (2005)