# Editing Maxwell speed distribution

**Warning:** You are not logged in. Your IP address will be publicly visible if you make any edits. If you **log in** or **create an account**, your edits will be attributed to your username, along with other benefits.

The edit can be undone.
Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

Latest revision | Your text | ||

Line 88: | Line 88: | ||

As a consequence of the former theorems, and by simulation of many examples, the following conjecture can be stated: | As a consequence of the former theorems, and by simulation of many examples, the following conjecture can be stated: | ||

− | For any <math>p</math> with <math>||p||=1</math>, with finite <math> \langle x^2,p \rangle </math> and verifying <math>\lim_{n\rightarrow\infty} ||\mathcal T^np(x)-\mu(x)||=0</math>, the limit <math>\mu(x)</math> is the fixed point <math>p_{\alpha}(x)=\sqrt{\alpha\over\pi}\,e^{-\alpha x^2}</math>, with <math>\alpha=(2\, \langle x^2,p \rangle)^{-1}</math>. That is, the asymptotic steady state is the | + | For any <math>p</math> with <math>||p||=1</math>, with finite <math> \langle x^2,p \rangle </math> and verifying <math>\lim_{n\rightarrow\infty} ||\mathcal T^np(x)-\mu(x)||=0</math>, the limit <math>\mu(x)</math> is the fixed point <math>p_{\alpha}(x)=\sqrt{\alpha\over\pi}\,e^{-\alpha x^2}</math>, with <math>\alpha=(2\, \langle x^2,p \rangle)^{-1}</math>. That is, the asymptotic steady state is the gaussian distribution with the same mean energy than the initial out-of-equilibrium state <math>p</math>. |

===Conclusion=== | ===Conclusion=== |