Legendre polynomials: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (range definition for the so-called shifted polynomials)
m (Normalisation)
Line 5: Line 5:
:<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math>
:<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math>


'''Legendre polynomials''' can also be defined using '''Rodrigues formula''' as:
'''Legendre polynomials''' can also be defined (Ref 1) using '''Rodrigues formula''' as:


:<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math>
:<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math>
Line 12: Line 12:


:<math> \int_{-1}^{1} P_n(x) P_m(x) d x = 0, </math>  for <math> m \ne n </math>
:<math> \int_{-1}^{1} P_n(x) P_m(x) d x = 0, </math>  for <math> m \ne n </math>
whereas
:<math>\int_{-1}^{1} P_n(x) P_n(x) d x = \frac{2}{2n+1} </math>


The first seven  Legendre polynomials are:
The first seven  Legendre polynomials are:

Revision as of 18:58, 20 June 2008

Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation. The Legendre polynomial, can be defined by the contour integral

Legendre polynomials can also be defined (Ref 1) using Rodrigues formula as:

Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:

for

whereas

The first seven Legendre polynomials are:







"shifted" Legendre polynomials (which obey the orthogonality relationship in the range [0:1]):




Powers in terms of Legendre polynomials:






See also