LaTeX math markup

From SklogWiki
Jump to: navigation, search

Note: this page is a subsection of the Wikipedia page Help:Displaying a formula.

Subscripts, superscripts, integrals

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 a^2 a^2 \,\!
Subscript a_2 a_2 a_2 \,\!
Grouping a^{2+2} a^{2+2} a^{2+2}\,\!
a_{i,j} a_{i,j} a_{i,j}\,\!
Combining sub & super x_2^3 x_2^3
Preceding and/or Additional sub & super \sideset{_1^2}{_3^4}\prod_a^b \sideset{_1^2}{_3^4}\prod_a^b
{}_1^2\!\Omega_3^4 {}_1^2\!\Omega_3^4
Stacking \overset{\alpha}{\omega} \overset{\alpha}{\omega}
\underset{\alpha}{\omega} \underset{\alpha}{\omega}
\overset{\alpha}{\underset{\gamma}{\omega}} \overset{\alpha}{\underset{\gamma}{\omega}}
\stackrel{\alpha}{\omega} \stackrel{\alpha}{\omega}
Derivative (forced PNG) x', y, f', f\!   x', y'', f', f''\!
Derivative (f in italics may overlap primes in HTML) x', y, f', f x', y'', f', f'' x', y'', f', f''\!
Derivative (wrong in HTML) x^\prime, y^{\prime\prime} x^\prime, y^{\prime\prime} x^\prime, y^{\prime\prime}\,\!
Derivative (wrong in PNG) x\prime, y\prime\prime x\prime, y\prime\prime x\prime, y\prime\prime\,\!
Derivative dots \dot{x}, \ddot{x} \dot{x}, \ddot{x}
Underlines, overlines, vectors \hat a \ \bar b \ \vec c \hat a \ \bar b \ \vec c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}
\overline{g h i} \ \underline{j k l} \overline{g h i} \ \underline{j k l}
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C  A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} \overbrace{ 1+2+\cdots+100 }^{5050}
Underbraces \underbrace{ a+b+\cdots+z }_{26} \underbrace{ a+b+\cdots+z }_{26}
Sum \sum_{k=1}^N k^2 \sum_{k=1}^N k^2
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 \textstyle \sum_{k=1}^N k^2
Product \prod_{i=1}^N x_i \prod_{i=1}^N x_i
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i \textstyle \prod_{i=1}^N x_i
Coproduct \coprod_{i=1}^N x_i \coprod_{i=1}^N x_i
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i \textstyle \coprod_{i=1}^N x_i
Limit \lim_{n \to \infty}x_n \lim_{n \to \infty}x_n
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n \textstyle \lim_{n \to \infty}x_n
Integral \int\limits_{-N}^{N} e^x\, dx \int\limits_{-N}^{N} e^x\, dx
Integral (force \textstyle) \textstyle \int\limits_{-N}^{N} e^x\, dx \textstyle \int\limits_{-N}^{N} e^x\, dx
Double integral \iint\limits_{D} \, dx\,dy \iint\limits_{D} \, dx\,dy
Triple integral \iiint\limits_{E} \, dx\,dy\,dz \iiint\limits_{E} \, dx\,dy\,dz
Quadruple integral \iiiint\limits_{F} \, dx\,dy\,dz\,dt \iiiint\limits_{F} \, dx\,dy\,dz\,dt
Path integral \oint\limits_{C} x^3\, dx + 4y^2\, dy \oint\limits_{C} x^3\, dx + 4y^2\, dy
Intersections \bigcap_1^{n} p \bigcap_1^{n} p
Unions \bigcup_1^{k} p \bigcup_1^{k} p

Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 \frac{2}{4}=0.5
Small Fractions \tfrac{2}{4} = 0.5 \tfrac{2}{4} = 0.5
Large (normal) Fractions \dfrac{2}{4} = 0.5 \dfrac{2}{4} = 0.5
Large (nested) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a
Binomial coefficients \binom{n}{k} \binom{n}{k}
Small Binomial coefficients \tbinom{n}{k} \tbinom{n}{k}
Large (normal) Binomial coefficients \dbinom{n}{k} \dbinom{n}{k}
Matrices
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
\begin{matrix} x & y \\ z & v
\end{matrix}
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
\begin{vmatrix} x & y \\ z & v
\end{vmatrix}
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
\begin{Vmatrix} x & y \\ z & v
\end{Vmatrix}
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
& \ddots & \vdots \\ 0 & \cdots &
0\end{bmatrix}
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
\begin{Bmatrix} x & y \\ z & v
\end{Bmatrix}
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
\begin{pmatrix} x & y \\ z & v
\end{pmatrix}
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)

\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
Case distinctions
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
f(n) = 
\begin{cases}
  n/2,  & \mbox{if }n\mbox{ is even} \\ 
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
Multiline equations
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}

\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}

\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
Multiline equations (more)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
Breaking up a long expression so that it wraps when necessary

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

f(x) \,\!= \sum_{n=0}^\infty a_n x^n = a_0 +a_1x+a_2x^2+\cdots

Simultaneous equations
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}