Difference between revisions of "Kirkwood superposition approximation"

From SklogWiki
Jump to: navigation, search
m (References: Added a reference)
Line 19: Line 19:
 
#[http://dx.doi.org/10.1143/PTP.21.421 Ryuzo Abe "On the Kirkwood Superposition Approximation", Progress of Theoretical Physics '''21''' pp. 421-430 (1959)]
 
#[http://dx.doi.org/10.1143/PTP.21.421 Ryuzo Abe "On the Kirkwood Superposition Approximation", Progress of Theoretical Physics '''21''' pp. 421-430 (1959)]
 
#[http://dx.doi.org/10.1063/1.1725757    Russell V. Cochran and L. H. Lund "On the Kirkwood Superposition Approximation", Journal of Chemical Physics '''41''' pp.  3499-3504 (1964)]
 
#[http://dx.doi.org/10.1063/1.1725757    Russell V. Cochran and L. H. Lund "On the Kirkwood Superposition Approximation", Journal of Chemical Physics '''41''' pp.  3499-3504 (1964)]
 +
#[http://dx.doi.org/10.1088/0034-4885/31/2/301 G. H. A. Cole "Classical fluids and the superposition approximation", Reports on Progress in Physics '''31''' pp. 419-470 (1968)]
 
[[Category: Statistical mechanics]]
 
[[Category: Statistical mechanics]]

Revision as of 12:13, 30 June 2009

The Kirkwood superposition approximation takes its name from John G. Kirkwood (see Eq. 40 Ref. 1, Eq. 5.6 Ref. 2)


{\rm g}_N^{(3)}({\mathbf r}_1,{\mathbf r}_2,{\mathbf r}_3)={\rm g}_N^{(2)}({\mathbf r}_1,{\mathbf r}_2){\rm g}_N^{(2)}({\mathbf r}_2,{\mathbf r}_3){\rm g}_N^{(2)}({\mathbf r}_3,{\mathbf r}_1)


It appears that this was used as a basis of a closure for the Kirkwood integral equation (Ref. 1) and the Yvon, and Born-Green (Ref. 2) until the work of Morita and Hiroike (Ref. 3). It was pointed out in Ref.s 4 and 5, that there is an inconsistency between the pressure and the compressibility equation if this superposition approximation is used to generate g(r). This approximation is rigorously correct for one-dimensional systems, and is only true in three-dimensions in the limit of zero density.

References

  1. John G. Kirkwood, "Statistical Mechanics of Fluid Mixtures", Journal of Chemical Physics 3 pp. 300-313 (1935)
  2. M. Born and H. S. Green "A General Kinetic Theory of Liquids. I. The Molecular Distribution Functions" Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 188 pp. 10-18 (1946)
  3. Tohru Morita and Kazuo Hiroike "A New Approach to the Theory of Classical Fluids. I" Progress of Theoretical Physics 23 pp. 1003-1027 (1960)
  4. B. R. A. Nijboer and L. Van Hove "Radial Distribution Function of a Gas of Hard Spheres and the Superposition Approximation", Physical Review 85 pp. 777 - 783 (1952)
  5. G. S. Rushbrooke and H. I. Scoins "On the Theory of Fluids", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 216 pp. 203-218 (1953)
  6. Ryuzo Abe "On the Kirkwood Superposition Approximation", Progress of Theoretical Physics 21 pp. 421-430 (1959)
  7. Russell V. Cochran and L. H. Lund "On the Kirkwood Superposition Approximation", Journal of Chemical Physics 41 pp. 3499-3504 (1964)
  8. G. H. A. Cole "Classical fluids and the superposition approximation", Reports on Progress in Physics 31 pp. 419-470 (1968)