Ideal gas Helmholtz energy function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (New page: From equations :<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math> and :<math>A=-k_B T \ln Q_{NVT}</math> one has :<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}...)
 
m (defined a couple of terms)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
From equations  
From equations  
:<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math>
:<math>Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N</math>
and  
for the [[ Ideal gas partition function | canonical ensemble partition function for an ideal gas]], and  
:<math>A=-k_B T \ln Q_{NVT}</math>
:<math>\left.A\right.=-k_B T \ln Q_{NVT}</math>
one has
for the [[Helmholtz energy function]], one has
:<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math>
:<math>A=-k_BT\left(\ln \frac{1}{N!} + N\ln\frac{V}{\Lambda^{3}}\right)</math>
::<math>=-k_BT\left(-\ln N! + N\ln\frac{VN}{\Lambda^3N}\right)</math>
::<math>=-k_BT\left(-\ln N! + N\ln\frac{VN}{\Lambda^3N}\right)</math>
Line 11: Line 11:
one arrives at  
one arrives at  


<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math>
:<math>A=Nk_BT\left(\ln \Lambda^3 \rho -1 \right)</math>
 
where <math>\Lambda</math>is the [[de Broglie thermal wavelength]] and <math>k_B</math> is the [[Boltzmann constant]].
[[Category:Ideal gas]]
[[Category:Statistical mechanics]]

Latest revision as of 12:19, 4 August 2008

From equations

for the canonical ensemble partition function for an ideal gas, and

for the Helmholtz energy function, one has

using Stirling's approximation

one arrives at

where is the de Broglie thermal wavelength and is the Boltzmann constant.