Ice Ih: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Started a section on experimental data.)
m (Started a section on the Phonon density of states)
Line 1: Line 1:
{{Stub-water}}
{{Stub-water}}
'''Ice Ih''' (hexagonal ice) is a proton disordered [[Ice phases |ice phase]] having the space group P6<sub>3</sub>/mmc. Ice Ih has the following lattice parameters at 250 K:  ''a''=4.51842 &Aring;, <math>b=a\sqrt3</math>, and ''c''=7.35556 &Aring; with four molecules per  unit cell (table 3 in Ref. 2). The proton ordered form of ice Ih is known as [[ice XI]], which (in principle) forms when ice Ih is cooled to below 72K (it is usually doped with KOH to aid the transition).
'''Ice Ih''' (hexagonal ice) is a proton disordered [[Ice phases |ice phase]] having the space group P6<sub>3</sub>/mmc. Ice Ih has the following lattice parameters at 250 K:  ''a''=4.51842 &Aring;, <math>b=a\sqrt3</math>, and ''c''=7.35556 &Aring; with four molecules per  unit cell  
(in Table 3 of <ref>[http://dx.doi.org/10.1107/S0108768194004933 K. Röttger, A. Endriss, J. Ihringer, S. Doyle and W. F. Kuhs "Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K", Acta Crystallographica Section B '''50''' pp. 644-648 (1994)]</ref>).  
The proton ordered form of ice Ih is known as [[ice XI]], which (in principle) forms when ice Ih is cooled to below 72K (it is usually doped with KOH to aid the transition).
==Phonon density of states==
In
<ref>[http://dx.doi.org/10.1016/S0921-4526(99)01699-3  Shunle Dong and Jichen Li "The test of water potentials by simulating the vibrational dynamics of ice", Physica B '''276-278''' pp. 469-470 (2000)  ]</ref>
the phonon density of states for the [[POL1]], [[TIPS2]], [[TIP4P]], [[TIP3P]], [[SPC]], [[R|Rowlinson]], [[MCY]], and [[BF]] [[List of empirical water models |empirical water models]] are compared to experiment.
==Experimental data==
==Experimental data==
*[http://dx.doi.org/10.1063/1.2183324  Rainer Feistel and Wolfgang Wagner "A New Equation of State for H2O Ice Ih", Journal of Physical and Chemical Reference Data '''35''' pp. 1021- (2006)]
*[http://dx.doi.org/10.1063/1.2183324  Rainer Feistel and Wolfgang Wagner "A New Equation of State for H2O Ice Ih", Journal of Physical and Chemical Reference Data '''35''' pp. 1021- (2006)]
==References==
==References==
#[http://dx.doi.org/10.1021/ja01315a102 Linus Pauling "The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement", Journal of the American Chemical Society '''57''' pp. 2674 - 2680 (1935)]
<references/>
#[http://dx.doi.org/10.1107/S0108768194004933 K. Röttger, A. Endriss, J. Ihringer, S. Doyle and W. F. Kuhs "Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K", Acta Crystallographica Section B '''50''' pp. 644-648 (1994)]
'''Related reading'''
#[http://dx.doi.org/10.1039/b418934e Carlos Vega, Carl McBride, Eduardo Sanz and Jose L. F. Abascal "Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices Ih, Ic, II, III, IV, V, VI, VII, VIII, IX, XI and XII", Physical Chemistry Chemical Physics '''7''' pp. 1450 - 1456 (2005)]
*[http://dx.doi.org/10.1021/ja01315a102 Linus Pauling "The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement", Journal of the American Chemical Society '''57''' pp. 2674 - 2680 (1935)]
#[http://dx.doi.org/10.1039/b703873a Jose L. F. Abascal and C. Vega "The melting point of hexagonal ice (Ih) is strongly dependent on the quadrupole of the water models", PCCP '''9''' pp. 2775 - 2778 (2007)]
*[http://dx.doi.org/10.1039/b418934e Carlos Vega, Carl McBride, Eduardo Sanz and Jose L. F. Abascal "Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices Ih, Ic, II, III, IV, V, VI, VII, VIII, IX, XI and XII", Physical Chemistry Chemical Physics '''7''' pp. 1450 - 1456 (2005)]
#[http://dx.doi.org/10.1021/jp0743121 E. G. Noya, C. Menduiña, J. L. Aragones, and C. Vega "Equation of State, Thermal Expansion Coefficient, and Isothermal Compressibility for Ices Ih, II, III, V, and VI, as Obtained from Computer Simulation", Journal of Physical Chemistry C '''111''' pp. 15877 - 15888 (2007)]
*[http://dx.doi.org/10.1039/b703873a Jose L. F. Abascal and C. Vega "The melting point of hexagonal ice (Ih) is strongly dependent on the quadrupole of the water models", PCCP '''9''' pp. 2775 - 2778 (2007)]
*[http://dx.doi.org/10.1021/jp0743121 E. G. Noya, C. Menduiña, J. L. Aragones, and C. Vega "Equation of State, Thermal Expansion Coefficient, and Isothermal Compressibility for Ices Ih, II, III, V, and VI, as Obtained from Computer Simulation", Journal of Physical Chemistry C '''111''' pp. 15877 - 15888 (2007)]
[[category: water]]
[[category: water]]

Revision as of 15:42, 10 June 2009

This article is a 'stub' about water and/or ice. It has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add material to this article, remove the {{Stub-water}} template from this page.

Ice Ih (hexagonal ice) is a proton disordered ice phase having the space group P63/mmc. Ice Ih has the following lattice parameters at 250 K: a=4.51842 Å, , and c=7.35556 Å with four molecules per unit cell (in Table 3 of [1]). The proton ordered form of ice Ih is known as ice XI, which (in principle) forms when ice Ih is cooled to below 72K (it is usually doped with KOH to aid the transition).

Phonon density of states

In [2] the phonon density of states for the POL1, TIPS2, TIP4P, TIP3P, SPC, Rowlinson, MCY, and BF empirical water models are compared to experiment.

Experimental data

References

Related reading