Editing IRASPA

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
{{Lowercase title}}
{{Lowercase title}}
[[File:IRASPA-logo.png|thumb|150px|right]]
 
[[File:IRASPA-logo.png|100px]]
 
'''iRASPA''' <ref>[https://doi.org/10.1080/08927022.2018.1426855 David Dubbeldam, Sofía Calero & Thijs J.H. Vlugt "iRASPA: GPU-accelerated visualization software for materials scientists", Molecular Simulation (advance article)]</ref>  
'''iRASPA''' <ref>[https://doi.org/10.1080/08927022.2018.1426855 David Dubbeldam, Sofía Calero & Thijs J.H. Vlugt "iRASPA: GPU-accelerated visualization software for materials scientists", Molecular Simulation (advance article)]</ref>  
is a GPU-accelated visualization package (with editing capabilities) aimed at material science. Examples of materials are metals, metal-oxides, ceramics, biomaterials, zeolites, clays, and metal-organic frameworks. iRASPA is exclusively for macOS and as such can leverage the latest visualization technologies with high performance. iRASPA extensively utilizes GPU computing. For example, void-fractions and surface areas can be computed in a fraction of a second for small/medium structures and in a few seconds for very large unit cells. It can handle large structures (hundreds of thousands of atoms), including ambient occlusion, with high frame rates.
is a GPU-accelated visualization package (with editing capabilities) aimed at material science. Examples of materials are metals, metal-oxides, ceramics, biomaterials, zeolites, clays, and metal-organic frameworks. iRASPA is exclusively for macOS and as such can leverage the latest visualization technologies with high performance. iRASPA extensively utilizes GPU computing. For example, void-fractions and surface areas can be computed in a fraction of a second for small/medium structures and in a few seconds for very large unit cells. It can handle large structures (hundreds of thousands of atoms), including ambient occlusion, with high frame rates.
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)

Template used on this page: