Hard tetrahedron model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added stub template until more material is added.)
mNo edit summary
Line 3: Line 3:
The '''hard tetrahedron model'''.
The '''hard tetrahedron model'''.
==Maximum packing fraction==
==Maximum packing fraction==
<math>\phi=0.8503</math><ref>[http://dx.doi.org/10.1038/nature08641 Amir Haji-Akbari, Michael Engel, Aaron S. Keys, Xiaoyu Zheng, Rolfe G. Petschek, Peter Palffy-Muhoray  and  Sharon C. Glotzer "Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra", Nature '''462''' pp. 773-777 (2009)]</ref>
It has recently been shown that regular tetrahedra are able to achieve packing fractions as high as <math>\phi=0.8503</math><ref>[http://dx.doi.org/10.1038/nature08641 Amir Haji-Akbari, Michael Engel, Aaron S. Keys, Xiaoyu Zheng, Rolfe G. Petschek, Peter Palffy-Muhoray  and  Sharon C. Glotzer "Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra", Nature '''462''' pp. 773-777 (2009)]</ref> (the [[hard sphere model |hard sphere]] packing fraction is  <math>\pi/(3 \sqrt{2}) \approx 74.048%</math> <ref>[http://dx.doi.org/10.1038/26609 Neil J. A. Sloane "Kepler's conjecture confirmed", Nature '''395''' pp. 435-436 (1998)]</ref>). This is in stark contrast to work as recent as in 2006, where it was suggested that the "...regular tetrahedron might even be the convex body having the smallest possible packing density"<ref>[http://dx.doi.org/10.1073/pnas.0601389103 J. H. Conway and S. Torquato "Packing, tiling, and covering with tetrahedra", Proceedings of the National Academy of Sciences of the United States of America '''103''' 10612-10617 (2006)]</ref>.
==References==
==References==
<references/>
<references/>

Revision as of 13:36, 12 May 2010

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

The hard tetrahedron model.

Maximum packing fraction

It has recently been shown that regular tetrahedra are able to achieve packing fractions as high as [1] (the hard sphere packing fraction is [2]). This is in stark contrast to work as recent as in 2006, where it was suggested that the "...regular tetrahedron might even be the convex body having the smallest possible packing density"[3].

References

Related reading