Hard superball model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Fixed volume equation formatting)
(simplified definition of superball and volume formula)
Line 4: Line 4:
The '''hard superball model'''  is defined by the inequality
The '''hard superball model'''  is defined by the inequality


:<math>\left|\frac{x}{a}\right|^{2q} + \left|\frac{y}{a}\right|^{2q} +\left|\frac{z}{a}\right|^{2q}  \le 1</math>  
:<math>|x|^{2q} + |y|^{2q} +|z|^{2q}  \le a^{2q}</math>  


where ''x'', ''y'' and ''z'' are scaled Cartesian coordinates with ''q'' the deformation parameter and radius ''a''. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (''q'' = 0.5) and the [[Hard cube model |cube]] (''q'' = ∞) via the [[Hard sphere model |sphere]] (''q'' = 1) as shown in the right figure.
where ''x'', ''y'' and ''z'' are scaled Cartesian coordinates with ''q'' the deformation parameter and radius ''a''. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (''q'' = 0.5) and the [[Hard cube model |cube]] (''q'' = ∞) via the [[Hard sphere model |sphere]] (''q'' = 1) as shown in the right figure.
Line 14: Line 14:
\begin{align}
\begin{align}
         v(q,a) & =  & 8 a^3 \int_{0}^1 \int_{0}^{(1-x^{2q})^{1/2q}} (1-x^{2q}-y^{2q})^{1/2q} \mathrm{d}\, y \, \mathrm{d}\, x \\
         v(q,a) & =  & 8 a^3 \int_{0}^1 \int_{0}^{(1-x^{2q})^{1/2q}} (1-x^{2q}-y^{2q})^{1/2q} \mathrm{d}\, y \, \mathrm{d}\, x \\
         & = & \frac{8a^3\left[ \Gamma\left(1+1/2q\right) \right]^3}{\Gamma\left(1+ 3/2q\right)},
         & = & \frac{2a^3\left[ \Gamma\left(1+1/2q\right) \right]^3}{3q^2\Gamma\left(1+ 3/2q\right)},
\end{align}
\end{align}
</math>
</math>

Revision as of 23:53, 2 April 2018

The shape of superballs interpolates between octahedra (q = 0.5) and cubes (q = ∞) via spheres (q = 1).
Phase diagram for hard superballs in the (packing fraction) versus 1/q (bottom axis) and q (top axis) representation where q is the deformation parameter [2].

The hard superball model is defined by the inequality

where x, y and z are scaled Cartesian coordinates with q the deformation parameter and radius a. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (q = 0.5) and the cube (q = ∞) via the sphere (q = 1) as shown in the right figure.

Particle Volume

The volume of a superball with the shape parameter q and radius a is given by

where is the Gamma function.

Overlap algorithm

The most widely used overlap algorithm is on the basis of Perram and Wertheim method [1] [2].

Phase diagram

The full phase diagram of hard superballs whose shape interpolates from cubes to octahedra was reported in Ref [2].

References