Difference between revisions of "H-theorem"

From SklogWiki
Jump to: navigation, search
m (References: Added a recent publication)
Line 28: Line 28:
 
#[http://store.doverpublications.com/0486647412.html Sybren R. De Groot and Peter Mazur "Non-Equilibrium Thermodynamics", Dover Publications]
 
#[http://store.doverpublications.com/0486647412.html Sybren R. De Groot and Peter Mazur "Non-Equilibrium Thermodynamics", Dover Publications]
 
#[http://www.oup.com/uk/catalogue/?ci=9780195140187  Robert Zwanzig "Nonequilibrium Statistical Mechanics", Oxford University Press (2001)]
 
#[http://www.oup.com/uk/catalogue/?ci=9780195140187  Robert Zwanzig "Nonequilibrium Statistical Mechanics", Oxford University Press (2001)]
 +
'''Related reading'''
 +
*[http://dx.doi.org/10.1073/pnas.1001185107  Philip T. Gressman and Robert M. Strain "Global classical solutions of the Boltzmann equation with long-range interactions", Proceedings of the National Academy of Sciences of the United States of America '''107''' pp.  5744-5749 (2010)]
 +
 
[[category: non-equilibrium thermodynamics]]
 
[[category: non-equilibrium thermodynamics]]

Revision as of 12:01, 19 May 2010

Simeq0.png This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

Boltzmann's H-theorem

Boltzmann's H-theorem states that the entropy of a closed system can only increase in the course of time, and must approach a limit as time tends to infinity.

\sigma \geq 0

where \sigma is the entropy source strength, given by (Eq 36 Chap IX Ref. 2)

\sigma = -k \sum_{i,j} \int C(f_i,f_j) \ln f_i d {\mathbf u}_i

where the function C() represents binary collisions. At equilibrium, \sigma = 0.

Boltzmann's H-function

Boltzmann's H-function is defined by (Eq. 5.66 Ref. 3):

H=\iint f({\mathbf V}, {\mathbf r}, t) \ln f({\mathbf V}, {\mathbf r}, t) ~ d {\mathbf r} d{\mathbf V}

where {\mathbf V} is the molecular velocity. A restatement of the H-theorem is

\frac{dH}{dt} \leq 0

Gibbs's H-function

See also

References

  1. L. Boltzmann "", Wiener Ber. 63 pp. 275- (1872)
  2. Sybren R. De Groot and Peter Mazur "Non-Equilibrium Thermodynamics", Dover Publications
  3. Robert Zwanzig "Nonequilibrium Statistical Mechanics", Oxford University Press (2001)

Related reading