Grand canonical ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (New page: == Ensemble variables == * Chemical Potential, <math> \left. \mu \right. </math> * Volume, <math> V </math> * Temperature, <math> T </math> == Partition Function == ''Classical'' Pa...)
 
Line 10: Line 10:
== Partition Function ==
== Partition Function ==


''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{NVT} </math>
''Classical'' Partition Function (one-component system) in a three-dimensional space: <math> Q_{\mu VT} </math>


:<math> Q_{NVT} = \frac{V^N}{N! \Lambda^{3N} } \int  d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math>
:<math> Q_{\mu VT} = \sum_{N=0}^{\infty} \frac{ \exp \left[ \beta \mu N \right] V^N}{N! \Lambda^{3N} } \int  d (R^*)^{3N} \exp \left[ - \beta U \left( V, (R^*)^{3N} \right) \right] </math>


where:
where:

Revision as of 16:10, 28 February 2007

Ensemble variables

  • Chemical Potential,
  • Volume,
  • Temperature,

Partition Function

Classical Partition Function (one-component system) in a three-dimensional space:

where:

  • , with being the Boltzmann constant
  • is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
  • represent the 3N position coordinates of the particles (reduced with the system size): i.e.

Free energy and Partition Function

Free energy and Partition Function

The Helmholtz energy function is related to the canonical partition function via: