Gay-Berne model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a See also section)
m (→‎References: Added a recent publication)
 
Line 60: Line 60:
*[http://dx.doi.org/10.1103/PhysRevE.54.559  Douglas J. Cleaver, Christopher M. Care, Michael P. Allen, and Maureen P. Neal "Extension and generalization of the Gay-Berne potential" Physical Review E '''54''' pp. 559-567 (1996)]
*[http://dx.doi.org/10.1103/PhysRevE.54.559  Douglas J. Cleaver, Christopher M. Care, Michael P. Allen, and Maureen P. Neal "Extension and generalization of the Gay-Berne potential" Physical Review E '''54''' pp. 559-567 (1996)]
*[http://dx.doi.org/10.1016/S0009-2614(98)01090-2 Roberto Berardi, Carlo Fava, Claudio Zannoni "A Gay–Berne potential for dissimilar biaxial particles",  Chemical Physics Letters '''297''' pp. 8-14 (1998)]
*[http://dx.doi.org/10.1016/S0009-2614(98)01090-2 Roberto Berardi, Carlo Fava, Claudio Zannoni "A Gay–Berne potential for dissimilar biaxial particles",  Chemical Physics Letters '''297''' pp. 8-14 (1998)]
*[http://dx.doi.org/10.1080/00268976.2016.1274437 Luis F. Rull and José Manuel Romero-Enrique "Computer simulation study of the nematic-vapour interface in the Gay-Berne model", Molecular Physics '''115''' pp. 1214-1224 (2017)]
[[category:liquid crystals]]
[[category:liquid crystals]]
[[category:models]]
[[category:models]]

Latest revision as of 15:33, 19 May 2017

The Gay-Berne model [1] is used extensively in simulations of liquid crystalline systems. The Gay-Berne model is an anisotropic form of the Lennard-Jones 12:6 potential.

where, in the limit of one of the particles being spherical, gives:

and

with

and

A modification of the Gay-Berne potential has recently been proposed that is said to result in a 10-20% improvement in computational speed, as well as accuracy [2].

Phase diagram[edit]

Main article: Phase diagram of the Gay-Berne model

See also[edit]

References[edit]

Related reading