Editing Fused hard sphere chains

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 3: Line 3:
 
In the '''fused hard sphere chain''' model the ''molecule'' is built up form a string of overlapping [[hard sphere model|hard sphere sites]], each of diameter <math>\sigma</math>.
 
In the '''fused hard sphere chain''' model the ''molecule'' is built up form a string of overlapping [[hard sphere model|hard sphere sites]], each of diameter <math>\sigma</math>.
  
An effective number of monomers can be applied to the fused hard sphere chain model by using the relarion (Ref. <ref>[http://dx.doi.org/10.1063/1.470528    Yaoqi Zhou, Carol K. Hall and George Stell "Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids", Journal of Chemical Physics '''103''' pp. 2688-2695 (1995)]</ref> Eq. 2.18)
+
An effective number of monomers can be applied to the fused hard sphere chain model by using the relarion (Ref. 4 Eq. 2.18)
  
 
:<math>m_{\rm effective} = \frac{[1+(m-1)L^*]^3}{[1+(m-1)L^*(3-L^{*2})/2]^2}</math>
 
:<math>m_{\rm effective} = \frac{[1+(m-1)L^*]^3}{[1+(m-1)L^*(3-L^{*2})/2]^2}</math>
  
where <math>m</math> is the number of monomer units in the model, and <math>L^*=L/\sigma</math> is the reduced bond length.  
+
where ''m'' is the number of monomer units in the model, and <math>L^*=L/\sigma</math> is the reduced bond length.  
  
The volume of the fused hard sphere chain is given by (Ref. <ref name="BVD">[http://dx.doi.org/10.1063/1.459523 T. Boublík, C. Vega, and M. Diaz-Peña "Equation of state of chain molecules", Journal of Chemical Physics '''93''' pp. pp. 730-736 (1990)]</ref> Eq. 13)
+
The volume of the fused hard sphere chain is given by (Ref. 5 Eq. 13)
  
 
:<math>V_{\rm FHSC} =\frac{\pi \sigma^3}{6}  \left( 1 + (m-1)\frac{3L^*  - L^{*3}}{2} \right)  ~~~~  
 
:<math>V_{\rm FHSC} =\frac{\pi \sigma^3}{6}  \left( 1 + (m-1)\frac{3L^*  - L^{*3}}{2} \right)  ~~~~  
Line 18: Line 18:
 
</math>
 
</math>
  
where <math>0<\gamma \leq \pi</math> is the minimal bond angle, and the surface area is given by (Ref.<ref name="BVD" />  Eq. 12)
+
where <math>0<\gamma \leq \pi</math> is the minimal bond angle, and the surface area is given by (Ref. 5 Eq. 12)
  
 
:<math>S_{\mathrm FHSC} = \pi \sigma^2 \left( 1+\left( m-1 \right) L^* \right)</math>
 
:<math>S_{\mathrm FHSC} = \pi \sigma^2 \left( 1+\left( m-1 \right) L^* \right)</math>
 
==Equation of state==
 
==Equation of state==
The Vörtler and Nezbeda [[Equations of state | equation of state]] is given by <ref>[https://doi.org/10.1002/bbpc.19900940505 Horst L. Vörtler and I. Nezbeda "Volume-explicit equation of state and excess volume of mixing of fused hard sphere fluids", Berichte der Bunsen-Gesellschaft '''94''' pp. 559-563 (1990)]</ref>
+
The Vörtler and Nezbeda [[Equations of state | equation of state]] is given by
  
 
:<math>Z_{\mathrm{FHSC}}= 1+ (1+3\alpha)\eta_0(P^*) + C_{\rm FHSC}[\eta_0(P^*)]^{1.83}</math>
 
:<math>Z_{\mathrm{FHSC}}= 1+ (1+3\alpha)\eta_0(P^*) + C_{\rm FHSC}[\eta_0(P^*)]^{1.83}</math>
Line 34: Line 34:
 
:<math>\eta_0(P^*) = \frac{\sqrt{1+4(1+3\alpha)P^*}-1}{2+6\alpha}</math>
 
:<math>\eta_0(P^*) = \frac{\sqrt{1+4(1+3\alpha)P^*}-1}{2+6\alpha}</math>
  
The Waziri and Hamad [[Equations of state | equation of state]] for fused hard sphere chain fluids is given by <ref>[http://dx.doi.org/10.1021/ie800755s Saidu M. Waziri and Esam Z. Hamad "Volume-Explicit Equation of State for Fused Hard Sphere Chain Fluids", Industrial & Engineering Chemistry Research '''47''' pp. 9658-9662 (2008)]</ref>
+
The Waziri and Hamad [[Equations of state | equation of state]] for fused hard sphere chain fluids is given by
  
 
:<math>Z_{\mathrm{FHSC}} = 1 + 4m_{\mathrm{eff}}P^{*} + \frac{3}{4}m_{\mathrm{eff}}P^{*}\ln\left[\frac{3+P^{*}}{3+25P^{*}}\right] + \frac{216(m_{\mathrm{eff}} - 1)P^{*}}{(3+P^{*})(3+25P^{*})\{16+3\ln[(3+P^{*})/(3+25P^{*})]\}}</math>
 
:<math>Z_{\mathrm{FHSC}} = 1 + 4m_{\mathrm{eff}}P^{*} + \frac{3}{4}m_{\mathrm{eff}}P^{*}\ln\left[\frac{3+P^{*}}{3+25P^{*}}\right] + \frac{216(m_{\mathrm{eff}} - 1)P^{*}}{(3+P^{*})(3+25P^{*})\{16+3\ln[(3+P^{*})/(3+25P^{*})]\}}</math>
Line 41: Line 41:
  
 
:<math>m_{\mathrm{eff}}=\frac{2+3(m-1)L^{*}+2(m-1)^{2}L^{*2}+(m-1)L^{*3}}{2+3(m-1)L^{*}-(m-1)L^{*3}}</math>
 
:<math>m_{\mathrm{eff}}=\frac{2+3(m-1)L^{*}+2(m-1)^{2}L^{*2}+(m-1)L^{*3}}{2+3(m-1)L^{*}-(m-1)L^{*3}}</math>
 +
 +
 +
#Horst L. Vörtler and I. Nezbeda "Volume-explicit equation of state and excess volume of mixing of fused hard sphere fluids", Berichte der Bunsen-Gesellschaft '''94''' pp. 559- (1990)
 +
#[http://dx.doi.org/10.1021/ie800755s Saidu M. Waziri and Esam Z. Hamad "Volume-Explicit Equation of State for Fused Hard Sphere Chain Fluids", Industrial & Engineering Chemistry Research '''47''' pp. 9658-9662 (2008)]
  
 
==See also==
 
==See also==
 
*[[Rigid fully flexible fused hard sphere model]]
 
*[[Rigid fully flexible fused hard sphere model]]
 
==References==
 
==References==
<references/>
+
#[http://dx.doi.org/10.1080/00268979100100191 M. Whittle and A. J. Masters "Liquid crystal formation in a system of fused hard spheres", Molecular Physics '''72''' pp. 247-265 (1991)]
;Related reading
+
#[http://dx.doi.org/10.1103/PhysRevE.64.011703  Carl McBride, Carlos Vega, and Luis G. MacDowell "Isotropic-nematic phase transition: Influence of intramolecular flexibility using a fused hard sphere model" Physical Review E '''64''' 011703 (2001)]
*[http://dx.doi.org/10.1080/00268979100100191 M. Whittle and A. J. Masters "Liquid crystal formation in a system of fused hard spheres", Molecular Physics '''72''' pp. 247-265 (1991)]
+
#[http://dx.doi.org/10.1063/1.1517604      Carl McBride and Carlos Vega "A Monte Carlo study of the influence of molecular flexibility on the phase diagram of a fused hard sphere model", Journal of Chemical Physics '''117''' pp. 10370-10379  (2002)]
*[http://dx.doi.org/10.1103/PhysRevE.64.011703  Carl McBride, Carlos Vega, and Luis G. MacDowell "Isotropic-nematic phase transition: Influence of intramolecular flexibility using a fused hard sphere model" Physical Review E '''64''' 011703 (2001)]
+
#[http://dx.doi.org/10.1063/1.470528    Yaoqi Zhou, Carol K. Hall and George Stell "Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids", Journal of Chemical Physics '''103''' pp. 2688-2695 (1995)]
*[http://dx.doi.org/10.1063/1.1517604      Carl McBride and Carlos Vega "A Monte Carlo study of the influence of molecular flexibility on the phase diagram of a fused hard sphere model", Journal of Chemical Physics '''117''' pp. 10370-10379  (2002)]
+
#[http://dx.doi.org/10.1063/1.459523    T. Boublík, C. Vega, and M. Diaz-Peña "Equation of state of chain molecules", Journal of Chemical Physics '''93''' pp. pp. 730-736 (1990)]
*[http://dx.doi.org/10.1080/002689798168989 Antoine Chamoux and Aurelien Perera "On the linear hard sphere chain fluids", Molecular Physics '''93'' pp. 649-661 (1998)]
+
#[http://dx.doi.org/10.1080/002689798168989 Antoine Chamoux and Aurelien Perera "On the linear hard sphere chain fluids", Molecular Physics '''93'' pp. 649-661 (1998)]
 
[[category:liquid crystals]]
 
[[category:liquid crystals]]
 
[[category:models]]
 
[[category:models]]

Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel | Editing help (opens in new window)