Editing Flory-Huggins theory

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 31: Line 31:
*Polymer mixing always take place if the <math>\chi</math> parameter is negative. Miscible polymer mixtures with negative <math>\chi</math> exist due to specific interactions between given polymer segments. Miscibility or compatibility can be induced by several methods. For instance, introducing opposite charges in the different polymers or adding a copolymer containing A and B segments.
*Polymer mixing always take place if the <math>\chi</math> parameter is negative. Miscible polymer mixtures with negative <math>\chi</math> exist due to specific interactions between given polymer segments. Miscibility or compatibility can be induced by several methods. For instance, introducing opposite charges in the different polymers or adding a copolymer containing A and B segments.
*For polymer solutions (whose sites have the volume of a solvent molecule, <math>n_A</math>=1), the critical Flory-Huggins parameter is close to <math>1/2</math>. The temperature corresponding to this value <math>\chi</math>=<math>1/2</math> would be the critical temperature if the polymer is infinitely long and defines the [[theta solvent | theta temperature]] of the polymer-solvent system. Good solvent systems show significantly smaller positive values of <math>\chi</math>, e.g. 0.2.
*For polymer solutions (whose sites have the volume of a solvent molecule, <math>n_A</math>=1), the critical Flory-Huggins parameter is close to <math>1/2</math>. The temperature corresponding to this value <math>\chi</math>=<math>1/2</math> would be the critical temperature if the polymer is infinitely long and defines the [[theta solvent | theta temperature]] of the polymer-solvent system. Good solvent systems show significantly smaller positive values of <math>\chi</math>, e.g. 0.2.
*For polymer mixtures, <math>\chi</math> should be referred to the arbitrarily chosen microscopic volume defined as a site, e.g. 100 Angstroms. <math>\chi</math> values can be positive or negative and they are usually very small in absolute value for compatible or near to compatible blends <ref>[ N.  P. Balsara "Thermodynamics of Polymer Blends", in J.  E. Mark, editor, “Physical Properties of Polymers Handbook” AIP Press, pp. 257-268, (1996) ISBN 1563962950] </ref>
*For polymer mixtures, <math>\chi</math> should be referred to the arbitrarily chosen microscopic volume defined as a site, e.g. 100 Angstroms. <math>\chi</math> values and can be positive or negative and they are usually very small in absolute value for compatible or near to compatible blends <ref>[ N.  P. Balsara "Thermodynamics of Polymer Blends", in J.  E. Mark, editor, “Physical Properties of Polymers Handbook” AIP Press, pp. 257-268, (1996) ISBN 1563962950] </ref>


The <math>\chi</math> parameter is somewhat similar to a [[second virial coefficient]] expressing binary interactions between molecules and, therefore, it usually shows a linear dependence of <math>1/T</math>
The <math>\chi</math> parameter is somewhat similar to a [[second virial coefficient]] expressing binary interactions between molecules and, therefore, it usually shows a linear dependence of <math>1/T</math>
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)