Editing Dieterici equation of state

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 16: Line 16:
 
Sadus <ref>[http://dx.doi.org/10.1063/1.1380711 Richard J. Sadus "Equations of state for fluids: The Dieterici approach revisited", Journal of Chemical Physics '''115''' pp. 1460-1462 (2001)]</ref> proposed replacing the repulsive section of the Dieterici equation with the [[Carnahan-Starling equation of state]], which is often used to describe the equation of state of the [[hard sphere model]], resulting in (Eq. 5):
 
Sadus <ref>[http://dx.doi.org/10.1063/1.1380711 Richard J. Sadus "Equations of state for fluids: The Dieterici approach revisited", Journal of Chemical Physics '''115''' pp. 1460-1462 (2001)]</ref> proposed replacing the repulsive section of the Dieterici equation with the [[Carnahan-Starling equation of state]], which is often used to describe the equation of state of the [[hard sphere model]], resulting in (Eq. 5):
  
:<math>p = \frac{RT}{v} \frac{(1 + \eta + \eta^2 - \eta^3)}{(1-\eta)^3 }  e^{-a/RTv}</math>
+
:<math>p = \frac{RT}{v} \frac{ 1 + \eta + \eta^2 - \eta^3 }{(1-\eta)^3 }  e^{-a/RTv}</math>
  
 
where <math> \eta = b/4v </math> is the [[packing fraction]].
 
where <math> \eta = b/4v </math> is the [[packing fraction]].
 
This equation gives:
 
 
:<math>a = 2.99679 R T_c  v_c</math>
 
 
and
 
 
:<math>\eta_c = 0.357057</math>
 
  
 
==References==
 
==References==

Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel | Editing help (opens in new window)