Delaunay simplexes: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
(Some mor info on these nice structures, plus link to CGAL)
Line 1: Line 1:
[[Image:Delaunay.png|thumb|An example of  Delaunay triangulation in two-dimensions]]
[[Image:Delaunay.png|thumb|An example of  Delaunay triangulation in two-dimensions]]
A '''Delaunay simplex''' is the dual of the [[Voronoi cells |Voronoi diagram]]. Delaunay  simplexes were developed by Борис Николаевич Делоне. In two-dimensions <math>({\mathbb R}^2)</math> it is more commonly known as ''Delaunay triangulation'', and in three-dimensions <math>({\mathbb R}^3)</math>, as ''Delaunay tetrahedralisation''.
A '''Delaunay simplex''' is the dual of the [[Voronoi cells |Voronoi diagram]]. Delaunay  simplexes were developed by Борис Николаевич Делоне. In two-dimensions <math>({\mathbb R}^2)</math> it is more commonly known as ''Delaunay triangulation'', and in three-dimensions <math>({\mathbb R}^3)</math>, as ''Delaunay tetrahedralisation''.
The Delaunay triangulation fulfills the '''empty circle property''':
the circumscribing circle of each facet of such a triangulation does not contain any other vertex of the triangulation in its interior (a similar property holds for the tetrahedralisation).
==References==
==References==
#Математические основы структурного анализа кристаллов (совместно с А.Д.Александровым и Н.Падуровым), Москва, Матем. литература, 1934 г.
#Математические основы структурного анализа кристаллов (совместно с А.Д.Александровым и Н.Падуровым), Москва, Матем. литература, 1934 г.
==External links==
#[http://www.cgal.org/ The CGAL project on computational geometry]

Revision as of 16:14, 12 September 2007

An example of Delaunay triangulation in two-dimensions

A Delaunay simplex is the dual of the Voronoi diagram. Delaunay simplexes were developed by Борис Николаевич Делоне. In two-dimensions it is more commonly known as Delaunay triangulation, and in three-dimensions , as Delaunay tetrahedralisation.

The Delaunay triangulation fulfills the empty circle property: the circumscribing circle of each facet of such a triangulation does not contain any other vertex of the triangulation in its interior (a similar property holds for the tetrahedralisation).

References

  1. Математические основы структурного анализа кристаллов (совместно с А.Д.Александровым и Н.Падуровым), Москва, Матем. литература, 1934 г.

External links

  1. The CGAL project on computational geometry