Chemical potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎See also: Added an internal link)
m (→‎References: Added a recent publication)
Line 43: Line 43:
*[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)]
*[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)]
*[http://dx.doi.org/10.1063/1.4758757  Federico G. Pazzona, Pierfranco Demontis, and Giuseppe B. Suffritti "Chemical potential evaluation in NVT lattice-gas simulations", Journal of Chemical Physics '''137''' 154106 (2012)]
*[http://dx.doi.org/10.1063/1.4758757  Federico G. Pazzona, Pierfranco Demontis, and Giuseppe B. Suffritti "Chemical potential evaluation in NVT lattice-gas simulations", Journal of Chemical Physics '''137''' 154106 (2012)]
*[http://dx.doi.org/10.1063/1.4991324 E. A. Ustinov "Efficient chemical potential evaluation with kinetic Monte Carlo method and non-uniform external potential: Lennard-Jones fluid, liquid, and solid", Journal of Chemical Physics '''147''' 014105 (2017)]




[[category:classical thermodynamics]]
[[category:classical thermodynamics]]
[[category:statistical mechanics]]
[[category:statistical mechanics]]

Revision as of 15:08, 10 July 2017

Classical thermodynamics

Definition:

where is the Gibbs energy function, leading to

where is the Helmholtz energy function, is the Boltzmann constant, is the pressure, is the temperature and is the volume.

Statistical mechanics

The chemical potential is the derivative of the Helmholtz energy function with respect to the number of particles

where is the partition function for a fluid of identical particles

and is the configurational integral

Kirkwood charging formula

The Kirkwood charging formula is given by [1]

where is the intermolecular pair potential and is the pair correlation function.

See also

References

Related reading